x نى يېشىش
x=9
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
\left(\sqrt{x}\right)^{2}=\left(x-6\right)^{2}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنىڭ كىۋادراتىنى چىقىرىڭ.
x=\left(x-6\right)^{2}
\sqrt{x} نىڭ 2-دەرىجىسىنى ھېسابلاپ x نى چىقىرىڭ.
x=x^{2}-12x+36
ئىككى ئەزالىقلار تېيورېمىسى \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ئارقىلىق \left(x-6\right)^{2} نى يېيىڭ.
x-x^{2}=-12x+36
ھەر ئىككى تەرەپتىن x^{2} نى ئېلىڭ.
x-x^{2}+12x=36
12x نى ھەر ئىككى تەرەپكە قوشۇڭ.
13x-x^{2}=36
x بىلەن 12x نى بىرىكتۈرۈپ 13x نى چىقىرىڭ.
13x-x^{2}-36=0
ھەر ئىككى تەرەپتىن 36 نى ئېلىڭ.
-x^{2}+13x-36=0
كۆپ ئەزالىقنى ئۆلچەملىك شەكىلدە رەتلەڭ. ئەزالارنى چوڭدىن كىچىككە تىزىڭ.
a+b=13 ab=-\left(-36\right)=36
تەڭلىمىنى يېشىش ئۈچۈن گۇرۇپپىلاش ئارقىلىق سول تەرەپنى كۆپەيتىپ چىقىرىڭ. ئاۋۋال سول تەرەپنى -x^{2}+ax+bx-36 شەكلىدە يېزىش كېرەك. a ۋە b نى تېپىش ئۈچۈن يېشىدىغان سىستېما بېكىتىڭ.
1,36 2,18 3,12 4,9 6,6
ab مۇسبەت، شۇڭا a بىلەن b نىڭ بەلگىسى ئوخشاش a+b مۇسبەت، شۇڭا a بىلەن b نىڭ ھەر ئىككىسى مۇسبەت. ھاسىلات 36 چىقىدىغان بارلىق جۈپلەرنى تىزىڭ.
1+36=37 2+18=20 3+12=15 4+9=13 6+6=12
ھەر بىر جۈپنىڭ يىغىندىسىنى چىقىرىڭ.
a=9 b=4
13 دېگەن يىغىندا چىقىدىغان جۈپ ئارقىلىق يېشىلىدۇ.
\left(-x^{2}+9x\right)+\left(4x-36\right)
-x^{2}+13x-36 نى \left(-x^{2}+9x\right)+\left(4x-36\right) شەكلىدە قايتا يېزىڭ.
-x\left(x-9\right)+4\left(x-9\right)
بىرىنچى گۇرۇپپىدىن -x نى، ئىككىنچى گۇرۇپپىدىن 4 نى چىقىرىڭ.
\left(x-9\right)\left(-x+4\right)
تارقىتىش قانۇنى بويىچە ئومۇمىي ئەزا x-9 نى چىقىرىڭ.
x=9 x=4
تەڭلىمىنى يېشىش ئۈچۈن x-9=0 بىلەن -x+4=0 نى يېشىڭ.
\sqrt{9}=9-6
تەڭلىمە \sqrt{x}=x-6 دىكى 9 نى x گە ئالماشتۇرۇڭ.
3=3
ئاددىيلاشتۇرۇڭ. قىممەت x=9 تەڭلىمىنىڭ يېشىمى.
\sqrt{4}=4-6
تەڭلىمە \sqrt{x}=x-6 دىكى 4 نى x گە ئالماشتۇرۇڭ.
2=-2
ئاددىيلاشتۇرۇڭ. قىممەت x=4 تەڭلىمىنىڭ يېشىمى ئەمەس، چۈنكى سول ۋە ئوڭ قولدا قارىمۇ-قارشى بەلگىلەر بار.
x=9
تەڭلىمە \sqrt{x}=x-6نىڭ بىردىنبىر يېشىمى بار.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}