x نى يېشىش
x=2
x=0
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
\left(\sqrt{x+x}\right)^{2}=x^{2}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنىڭ كىۋادراتىنى چىقىرىڭ.
\left(\sqrt{2x}\right)^{2}=x^{2}
x بىلەن x نى بىرىكتۈرۈپ 2x نى چىقىرىڭ.
2x=x^{2}
\sqrt{2x} نىڭ 2-دەرىجىسىنى ھېسابلاپ 2x نى چىقىرىڭ.
2x-x^{2}=0
ھەر ئىككى تەرەپتىن x^{2} نى ئېلىڭ.
x\left(2-x\right)=0
x نى ئاجرىتىپ چىقىرىڭ.
x=0 x=2
تەڭلىمىنى يېشىش ئۈچۈن x=0 بىلەن 2-x=0 نى يېشىڭ.
\sqrt{0+0}=0
تەڭلىمە \sqrt{x+x}=x دىكى 0 نى x گە ئالماشتۇرۇڭ.
0=0
ئاددىيلاشتۇرۇڭ. قىممەت x=0 تەڭلىمىنىڭ يېشىمى.
\sqrt{2+2}=2
تەڭلىمە \sqrt{x+x}=x دىكى 2 نى x گە ئالماشتۇرۇڭ.
2=2
ئاددىيلاشتۇرۇڭ. قىممەت x=2 تەڭلىمىنىڭ يېشىمى.
x=0 x=2
\sqrt{x+x}=xنىڭ بارلىق ھەل قىلىش چارىلىرىنىڭ تىزىملىكى.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}