x نى يېشىش
x = \frac{\sqrt{7} + 1}{2} \approx 1.822875656
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
\sqrt{7}-x-x=-1
ھەر ئىككى تەرەپتىن x نى ئېلىڭ.
\sqrt{7}-2x=-1
-x بىلەن -x نى بىرىكتۈرۈپ -2x نى چىقىرىڭ.
-2x=-1-\sqrt{7}
ھەر ئىككى تەرەپتىن \sqrt{7} نى ئېلىڭ.
-2x=-\sqrt{7}-1
تەڭلىمە ئۆلچەملىك بولدى.
\frac{-2x}{-2}=\frac{-\sqrt{7}-1}{-2}
ھەر ئىككى تەرەپنى -2 گە بۆلۈڭ.
x=\frac{-\sqrt{7}-1}{-2}
-2 گە بۆلگەندە -2 گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
x=\frac{\sqrt{7}+1}{2}
-1-\sqrt{7} نى -2 كە بۆلۈڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}