\sqrt { 40 } = - x \sqrt { 10 } d x =
d نى يېشىش
d=-\frac{2}{x^{2}}
x\neq 0
x نى يېشىش (complex solution)
x=-\sqrt{2}id^{-\frac{1}{2}}
x=\sqrt{2}id^{-\frac{1}{2}}\text{, }d\neq 0
x نى يېشىش
x=\sqrt{-\frac{2}{d}}
x=-\sqrt{-\frac{2}{d}}\text{, }d<0
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
2\sqrt{10}=\left(-x\right)\sqrt{10}dx
40=2^{2}\times 10 نى ئاجرىتىڭ. ھاسىلات \sqrt{2^{2}\times 10} نىڭ كىۋادرات يىلتىزىنى كىۋادرات يىلتىز \sqrt{2^{2}}\sqrt{10} نىڭ ھاسىلاتى شەكلىدە قايتا يېزىڭ. 2^{2} نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
\left(-x\right)\sqrt{10}dx=2\sqrt{10}
بارلىق ئۆزگەرگۈچى ئەزالار تەڭلىكنىڭ سول تەرىپىدە تۇرىدىغان قىلىپ ئالماشتۇرۇڭ.
-x^{2}\sqrt{10}d=2\sqrt{10}
x گە x نى كۆپەيتىپ x^{2} نى چىقىرىڭ.
\left(-\sqrt{10}x^{2}\right)d=2\sqrt{10}
تەڭلىمە ئۆلچەملىك بولدى.
\frac{\left(-\sqrt{10}x^{2}\right)d}{-\sqrt{10}x^{2}}=\frac{2\sqrt{10}}{-\sqrt{10}x^{2}}
ھەر ئىككى تەرەپنى -x^{2}\sqrt{10} گە بۆلۈڭ.
d=\frac{2\sqrt{10}}{-\sqrt{10}x^{2}}
-x^{2}\sqrt{10} گە بۆلگەندە -x^{2}\sqrt{10} گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
d=-\frac{2}{x^{2}}
2\sqrt{10} نى -x^{2}\sqrt{10} كە بۆلۈڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}