ئاساسىي مەزمۇنغا ئاتلاش
w.r.t. β نى پارچىلاش
Tick mark Image
ھېسابلاش
Tick mark Image

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

\frac{\mathrm{d}}{\mathrm{d}\beta }(\sin(\beta ))=\left(\lim_{h\to 0}\frac{\sin(\beta +h)-\sin(\beta )}{h}\right)
فۇنكسىيە f\left(x\right) دە ھاسىلە \frac{f\left(x+h\right)-f\left(x\right)}{h} نىڭ چېكى، شۇڭا ئەگەر شۇ چەك بار بولسا h نىڭ ئورنى 0.
\lim_{h\to 0}\frac{\sin(h+\beta )-\sin(\beta )}{h}
سىنۇس يىغىندا فورمۇلاسىنى ئىشلىتىڭ.
\lim_{h\to 0}\frac{\sin(\beta )\left(\cos(h)-1\right)+\cos(\beta )\sin(h)}{h}
\sin(\beta ) نى ئاجرىتىپ چىقىرىڭ.
\left(\lim_{h\to 0}\sin(\beta )\right)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\left(\lim_{h\to 0}\cos(\beta )\right)\left(\lim_{h\to 0}\frac{\sin(h)}{h}\right)
چەكنى قايتا يېزىڭ.
\sin(\beta )\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(\beta )\left(\lim_{h\to 0}\frac{\sin(h)}{h}\right)
ھېسابلاش چېكىدە h نىڭ ئورنى 0 دە بولغاندا \beta تۇراقلىق مىقدار بولىدىغان پاكىتنى ئىشلىتىڭ.
\sin(\beta )\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(\beta )
چەك \lim_{\beta \to 0}\frac{\sin(\beta )}{\beta } نىڭ قىممىتى 1 دۇر.
\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)=\left(\lim_{h\to 0}\frac{\left(\cos(h)-1\right)\left(\cos(h)+1\right)}{h\left(\cos(h)+1\right)}\right)
چەك \lim_{h\to 0}\frac{\cos(h)-1}{h} نى ھېسابلاش ئۈچۈن سۈرەت ۋە مەخرەجنى \cos(h)+1 گە كۆپەيتىڭ.
\lim_{h\to 0}\frac{\left(\cos(h)\right)^{2}-1}{h\left(\cos(h)+1\right)}
\cos(h)+1 نى \cos(h)-1 كە كۆپەيتىڭ.
\lim_{h\to 0}-\frac{\left(\sin(h)\right)^{2}}{h\left(\cos(h)+1\right)}
پىفاگور تەڭلىكىنى ئىشلىتىڭ.
\left(\lim_{h\to 0}-\frac{\sin(h)}{h}\right)\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)
چەكنى قايتا يېزىڭ.
-\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)
چەك \lim_{\beta \to 0}\frac{\sin(\beta )}{\beta } نىڭ قىممىتى 1 دۇر.
\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)=0
\frac{\sin(h)}{\cos(h)+1} نىڭ 0 دە داۋاملىشىدىغانلىقىدىن ئىبارەت پاكىتنى ئىشلىتىڭ.
\cos(\beta )
قىممەت 0 نى ئىپادە \sin(\beta )\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(\beta ) گە ئالماشتۇرۇڭ.