r نى يېشىش
r=\frac{3\left(p-1\right)\left(3p+1\right)}{2}
p نى يېشىش
p=\frac{-\sqrt{2r+4}+1}{3}
p=\frac{\sqrt{2r+4}+1}{3}\text{, }r\geq -2
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
\left(3p-1\right)^{2}=2\left(r+2\right)
\pi نى ھەر ئىككى تەرەپتىن يېيىشتۈرۈڭ.
9p^{2}-6p+1=2\left(r+2\right)
ئىككى ئەزالىقلار تېيورېمىسى \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ئارقىلىق \left(3p-1\right)^{2} نى يېيىڭ.
9p^{2}-6p+1=2r+4
تارقىتىش قانۇنى بويىچە 2 نى r+2 گە كۆپەيتىڭ.
2r+4=9p^{2}-6p+1
بارلىق ئۆزگەرگۈچى ئەزالار تەڭلىكنىڭ سول تەرىپىدە تۇرىدىغان قىلىپ ئالماشتۇرۇڭ.
2r=9p^{2}-6p+1-4
ھەر ئىككى تەرەپتىن 4 نى ئېلىڭ.
2r=9p^{2}-6p-3
1 دىن 4 نى ئېلىپ -3 نى چىقىرىڭ.
\frac{2r}{2}=\frac{3\left(p-1\right)\left(3p+1\right)}{2}
ھەر ئىككى تەرەپنى 2 گە بۆلۈڭ.
r=\frac{3\left(p-1\right)\left(3p+1\right)}{2}
2 گە بۆلگەندە 2 گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}