n_4 نى يېشىش
\left\{\begin{matrix}n_{4}=\frac{i\left(3y-7\right)}{otx}\text{, }&x\neq 0\text{ and }o\neq 0\text{ and }t\neq 0\\n_{4}\in \mathrm{C}\text{, }&\left(t=0\text{ or }o=0\text{ or }x=0\right)\text{ and }y=\frac{7}{3}\end{matrix}\right.
o نى يېشىش
\left\{\begin{matrix}o=\frac{i\left(3y-7\right)}{n_{4}tx}\text{, }&x\neq 0\text{ and }n_{4}\neq 0\text{ and }t\neq 0\\o\in \mathrm{C}\text{, }&\left(t=0\text{ or }n_{4}=0\text{ or }x=0\right)\text{ and }y=\frac{7}{3}\end{matrix}\right.
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
tion_{4}x=7-3y
ھەر ئىككى تەرەپتىن 3y نى ئېلىڭ.
iotxn_{4}=7-3y
تەڭلىمە ئۆلچەملىك بولدى.
\frac{iotxn_{4}}{iotx}=\frac{7-3y}{iotx}
ھەر ئىككى تەرەپنى itox گە بۆلۈڭ.
n_{4}=\frac{7-3y}{iotx}
itox گە بۆلگەندە itox گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
n_{4}=-\frac{i\left(7-3y\right)}{otx}
-3y+7 نى itox كە بۆلۈڭ.
tion_{4}x=7-3y
ھەر ئىككى تەرەپتىن 3y نى ئېلىڭ.
in_{4}txo=7-3y
تەڭلىمە ئۆلچەملىك بولدى.
\frac{in_{4}txo}{in_{4}tx}=\frac{7-3y}{in_{4}tx}
ھەر ئىككى تەرەپنى itn_{4}x گە بۆلۈڭ.
o=\frac{7-3y}{in_{4}tx}
itn_{4}x گە بۆلگەندە itn_{4}x گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
o=-\frac{i\left(7-3y\right)}{n_{4}tx}
-3y+7 نى itn_{4}x كە بۆلۈڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}