x نى يېشىش
\left\{\begin{matrix}x=\frac{4\pi }{3}\text{, }&\nexists n_{1}\in \mathrm{Z}\text{ : }g=\pi n_{1}\\x\in \mathrm{R}\text{, }&\exists n_{2}\in \mathrm{Z}\text{ : }g=\pi n_{2}+\frac{\pi }{2}\end{matrix}\right.
g نى يېشىش
\left\{\begin{matrix}\\g=\pi n_{1}+\frac{\pi }{2}\text{, }n_{1}\in \mathrm{Z}\text{, }&\text{unconditionally}\\g\neq \pi n_{2}\text{, }\forall n_{2}\in \mathrm{Z}\text{, }&x=\frac{4\pi }{3}\end{matrix}\right.
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
3\cot(g)\left(2x-\pi \right)=3\cot(g)\left(x+\frac{\pi }{3}\right)
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى 3 گە كۆپەيتىڭ.
6\cot(g)x-3\cot(g)\pi =3\cot(g)\left(x+\frac{\pi }{3}\right)
تارقىتىش قانۇنى بويىچە 3\cot(g) نى 2x-\pi گە كۆپەيتىڭ.
6\cot(g)x-3\cot(g)\pi =3\cot(g)x+3\cot(g)\times \frac{\pi }{3}
تارقىتىش قانۇنى بويىچە 3\cot(g) نى x+\frac{\pi }{3} گە كۆپەيتىڭ.
6\cot(g)x-3\cot(g)\pi =3\cot(g)x+\frac{3\pi }{3}\cot(g)
3\times \frac{\pi }{3} نى يەككە ئاددىي كەسىر شەكلىدە ئىپادىلەڭ.
6\cot(g)x-3\cot(g)\pi =3\cot(g)x+\pi \cot(g)
3 ۋە 3 نى يېيىشتۈرۈڭ.
6\cot(g)x-3\cot(g)\pi -3\cot(g)x=\pi \cot(g)
ھەر ئىككى تەرەپتىن 3\cot(g)x نى ئېلىڭ.
3\cot(g)x-3\cot(g)\pi =\pi \cot(g)
6\cot(g)x بىلەن -3\cot(g)x نى بىرىكتۈرۈپ 3\cot(g)x نى چىقىرىڭ.
3\cot(g)x=\pi \cot(g)+3\cot(g)\pi
3\cot(g)\pi نى ھەر ئىككى تەرەپكە قوشۇڭ.
3\cot(g)x=4\pi \cot(g)
\pi \cot(g) بىلەن 3\cot(g)\pi نى بىرىكتۈرۈپ 4\pi \cot(g) نى چىقىرىڭ.
\frac{3\cot(g)x}{3\cot(g)}=\frac{4\pi \cot(g)}{3\cot(g)}
ھەر ئىككى تەرەپنى 3\cot(g) گە بۆلۈڭ.
x=\frac{4\pi \cot(g)}{3\cot(g)}
3\cot(g) گە بۆلگەندە 3\cot(g) گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
x=\frac{4\pi }{3}
4\pi \cot(g) نى 3\cot(g) كە بۆلۈڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}