x، y نى يېشىش
x=3
y=-1
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
3x+5y=4,x-3y=6
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
3x+5y=4
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
3x=-5y+4
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 5y نى ئېلىڭ.
x=\frac{1}{3}\left(-5y+4\right)
ھەر ئىككى تەرەپنى 3 گە بۆلۈڭ.
x=-\frac{5}{3}y+\frac{4}{3}
\frac{1}{3} نى -5y+4 كە كۆپەيتىڭ.
-\frac{5}{3}y+\frac{4}{3}-3y=6
يەنە بىر تەڭلىمە x-3y=6 دىكى x نىڭ ئورنىغا \frac{-5y+4}{3} نى ئالماشتۇرۇڭ.
-\frac{14}{3}y+\frac{4}{3}=6
-\frac{5y}{3} نى -3y گە قوشۇڭ.
-\frac{14}{3}y=\frac{14}{3}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{4}{3} نى ئېلىڭ.
y=-1
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى -\frac{14}{3} گە، يەنى كەسىرنىڭ ئەكس سانى ئارقىلىق ھەر ئىككى تەرەپنى كۆپەيتىدىغان سانغا بۆلۈڭ.
x=-\frac{5}{3}\left(-1\right)+\frac{4}{3}
x=-\frac{5}{3}y+\frac{4}{3} دە -1 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=\frac{5+4}{3}
-\frac{5}{3} نى -1 كە كۆپەيتىڭ.
x=3
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق \frac{4}{3} نى \frac{5}{3} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
x=3,y=-1
سىستېما ھەل قىلىندى.
3x+5y=4,x-3y=6
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}3&5\\1&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\6\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}3&5\\1&-3\end{matrix}\right))\left(\begin{matrix}3&5\\1&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\1&-3\end{matrix}\right))\left(\begin{matrix}4\\6\end{matrix}\right)
\left(\begin{matrix}3&5\\1&-3\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\1&-3\end{matrix}\right))\left(\begin{matrix}4\\6\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\1&-3\end{matrix}\right))\left(\begin{matrix}4\\6\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{3\left(-3\right)-5}&-\frac{5}{3\left(-3\right)-5}\\-\frac{1}{3\left(-3\right)-5}&\frac{3}{3\left(-3\right)-5}\end{matrix}\right)\left(\begin{matrix}4\\6\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{14}&\frac{5}{14}\\\frac{1}{14}&-\frac{3}{14}\end{matrix}\right)\left(\begin{matrix}4\\6\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{14}\times 4+\frac{5}{14}\times 6\\\frac{1}{14}\times 4-\frac{3}{14}\times 6\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-1\end{matrix}\right)
ھېسابلاڭ.
x=3,y=-1
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
3x+5y=4,x-3y=6
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
3x+5y=4,3x+3\left(-3\right)y=3\times 6
3x بىلەن x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى 1 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى 3 گە كۆپەيتىڭ.
3x+5y=4,3x-9y=18
ئاددىيلاشتۇرۇڭ.
3x-3x+5y+9y=4-18
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق 3x+5y=4 دىن 3x-9y=18 نى ئېلىڭ.
5y+9y=4-18
3x نى -3x گە قوشۇڭ. 3x بىلەن -3x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
14y=4-18
5y نى 9y گە قوشۇڭ.
14y=-14
4 نى -18 گە قوشۇڭ.
y=-1
ھەر ئىككى تەرەپنى 14 گە بۆلۈڭ.
x-3\left(-1\right)=6
x-3y=6 دە -1 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x+3=6
-3 نى -1 كە كۆپەيتىڭ.
x=3
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 3 نى ئېلىڭ.
x=3,y=-1
سىستېما ھەل قىلىندى.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}