ئاساسىي مەزمۇنغا ئاتلاش
x، y نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

x-2y=-3
بىرىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. ھەر ئىككى تەرەپتىن 2y نى ئېلىڭ.
x-2y=-3,2x+5y=30
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
x-2y=-3
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
x=2y-3
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 2y نى قوشۇڭ.
2\left(2y-3\right)+5y=30
يەنە بىر تەڭلىمە 2x+5y=30 دىكى x نىڭ ئورنىغا 2y-3 نى ئالماشتۇرۇڭ.
4y-6+5y=30
2 نى 2y-3 كە كۆپەيتىڭ.
9y-6=30
4y نى 5y گە قوشۇڭ.
9y=36
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 6 نى قوشۇڭ.
y=4
ھەر ئىككى تەرەپنى 9 گە بۆلۈڭ.
x=2\times 4-3
x=2y-3 دە 4 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=8-3
2 نى 4 كە كۆپەيتىڭ.
x=5
-3 نى 8 گە قوشۇڭ.
x=5,y=4
سىستېما ھەل قىلىندى.
x-2y=-3
بىرىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. ھەر ئىككى تەرەپتىن 2y نى ئېلىڭ.
x-2y=-3,2x+5y=30
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}1&-2\\2&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\30\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}1&-2\\2&5\end{matrix}\right))\left(\begin{matrix}1&-2\\2&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\2&5\end{matrix}\right))\left(\begin{matrix}-3\\30\end{matrix}\right)
\left(\begin{matrix}1&-2\\2&5\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\2&5\end{matrix}\right))\left(\begin{matrix}-3\\30\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\2&5\end{matrix}\right))\left(\begin{matrix}-3\\30\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{5-\left(-2\times 2\right)}&-\frac{-2}{5-\left(-2\times 2\right)}\\-\frac{2}{5-\left(-2\times 2\right)}&\frac{1}{5-\left(-2\times 2\right)}\end{matrix}\right)\left(\begin{matrix}-3\\30\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{9}&\frac{2}{9}\\-\frac{2}{9}&\frac{1}{9}\end{matrix}\right)\left(\begin{matrix}-3\\30\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{9}\left(-3\right)+\frac{2}{9}\times 30\\-\frac{2}{9}\left(-3\right)+\frac{1}{9}\times 30\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\4\end{matrix}\right)
ھېسابلاڭ.
x=5,y=4
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
x-2y=-3
بىرىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. ھەر ئىككى تەرەپتىن 2y نى ئېلىڭ.
x-2y=-3,2x+5y=30
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
2x+2\left(-2\right)y=2\left(-3\right),2x+5y=30
x بىلەن 2x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى 2 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى 1 گە كۆپەيتىڭ.
2x-4y=-6,2x+5y=30
ئاددىيلاشتۇرۇڭ.
2x-2x-4y-5y=-6-30
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق 2x-4y=-6 دىن 2x+5y=30 نى ئېلىڭ.
-4y-5y=-6-30
2x نى -2x گە قوشۇڭ. 2x بىلەن -2x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
-9y=-6-30
-4y نى -5y گە قوشۇڭ.
-9y=-36
-6 نى -30 گە قوشۇڭ.
y=4
ھەر ئىككى تەرەپنى -9 گە بۆلۈڭ.
2x+5\times 4=30
2x+5y=30 دە 4 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
2x+20=30
5 نى 4 كە كۆپەيتىڭ.
2x=10
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 20 نى ئېلىڭ.
x=5
ھەر ئىككى تەرەپنى 2 گە بۆلۈڭ.
x=5,y=4
سىستېما ھەل قىلىندى.