ئاساسىي مەزمۇنغا ئاتلاش
x، y نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

7x+2y=-33,x+9y=65
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
7x+2y=-33
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
7x=-2y-33
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 2y نى ئېلىڭ.
x=\frac{1}{7}\left(-2y-33\right)
ھەر ئىككى تەرەپنى 7 گە بۆلۈڭ.
x=-\frac{2}{7}y-\frac{33}{7}
\frac{1}{7} نى -2y-33 كە كۆپەيتىڭ.
-\frac{2}{7}y-\frac{33}{7}+9y=65
يەنە بىر تەڭلىمە x+9y=65 دىكى x نىڭ ئورنىغا \frac{-2y-33}{7} نى ئالماشتۇرۇڭ.
\frac{61}{7}y-\frac{33}{7}=65
-\frac{2y}{7} نى 9y گە قوشۇڭ.
\frac{61}{7}y=\frac{488}{7}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{33}{7} نى قوشۇڭ.
y=8
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى \frac{61}{7} گە، يەنى كەسىرنىڭ ئەكس سانى ئارقىلىق ھەر ئىككى تەرەپنى كۆپەيتىدىغان سانغا بۆلۈڭ.
x=-\frac{2}{7}\times 8-\frac{33}{7}
x=-\frac{2}{7}y-\frac{33}{7} دە 8 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=\frac{-16-33}{7}
-\frac{2}{7} نى 8 كە كۆپەيتىڭ.
x=-7
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق -\frac{33}{7} نى -\frac{16}{7} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
x=-7,y=8
سىستېما ھەل قىلىندى.
7x+2y=-33,x+9y=65
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}7&2\\1&9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-33\\65\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}7&2\\1&9\end{matrix}\right))\left(\begin{matrix}7&2\\1&9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&2\\1&9\end{matrix}\right))\left(\begin{matrix}-33\\65\end{matrix}\right)
\left(\begin{matrix}7&2\\1&9\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&2\\1&9\end{matrix}\right))\left(\begin{matrix}-33\\65\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&2\\1&9\end{matrix}\right))\left(\begin{matrix}-33\\65\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{7\times 9-2}&-\frac{2}{7\times 9-2}\\-\frac{1}{7\times 9-2}&\frac{7}{7\times 9-2}\end{matrix}\right)\left(\begin{matrix}-33\\65\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{61}&-\frac{2}{61}\\-\frac{1}{61}&\frac{7}{61}\end{matrix}\right)\left(\begin{matrix}-33\\65\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{61}\left(-33\right)-\frac{2}{61}\times 65\\-\frac{1}{61}\left(-33\right)+\frac{7}{61}\times 65\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-7\\8\end{matrix}\right)
ھېسابلاڭ.
x=-7,y=8
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
7x+2y=-33,x+9y=65
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
7x+2y=-33,7x+7\times 9y=7\times 65
7x بىلەن x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى 1 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى 7 گە كۆپەيتىڭ.
7x+2y=-33,7x+63y=455
ئاددىيلاشتۇرۇڭ.
7x-7x+2y-63y=-33-455
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق 7x+2y=-33 دىن 7x+63y=455 نى ئېلىڭ.
2y-63y=-33-455
7x نى -7x گە قوشۇڭ. 7x بىلەن -7x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
-61y=-33-455
2y نى -63y گە قوشۇڭ.
-61y=-488
-33 نى -455 گە قوشۇڭ.
y=8
ھەر ئىككى تەرەپنى -61 گە بۆلۈڭ.
x+9\times 8=65
x+9y=65 دە 8 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x+72=65
9 نى 8 كە كۆپەيتىڭ.
x=-7
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 72 نى ئېلىڭ.
x=-7,y=8
سىستېما ھەل قىلىندى.