x، y نى يېشىش
x = \frac{43}{13} = 3\frac{4}{13} \approx 3.307692308
y=\frac{6}{13}\approx 0.461538462
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
4x-7y=10,-3x+2y=-9
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
4x-7y=10
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
4x=7y+10
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 7y نى قوشۇڭ.
x=\frac{1}{4}\left(7y+10\right)
ھەر ئىككى تەرەپنى 4 گە بۆلۈڭ.
x=\frac{7}{4}y+\frac{5}{2}
\frac{1}{4} نى 7y+10 كە كۆپەيتىڭ.
-3\left(\frac{7}{4}y+\frac{5}{2}\right)+2y=-9
يەنە بىر تەڭلىمە -3x+2y=-9 دىكى x نىڭ ئورنىغا \frac{7y}{4}+\frac{5}{2} نى ئالماشتۇرۇڭ.
-\frac{21}{4}y-\frac{15}{2}+2y=-9
-3 نى \frac{7y}{4}+\frac{5}{2} كە كۆپەيتىڭ.
-\frac{13}{4}y-\frac{15}{2}=-9
-\frac{21y}{4} نى 2y گە قوشۇڭ.
-\frac{13}{4}y=-\frac{3}{2}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{15}{2} نى قوشۇڭ.
y=\frac{6}{13}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى -\frac{13}{4} گە، يەنى كەسىرنىڭ ئەكس سانى ئارقىلىق ھەر ئىككى تەرەپنى كۆپەيتىدىغان سانغا بۆلۈڭ.
x=\frac{7}{4}\times \frac{6}{13}+\frac{5}{2}
x=\frac{7}{4}y+\frac{5}{2} دە \frac{6}{13} نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=\frac{21}{26}+\frac{5}{2}
سۈرەتنى سۈرەتكە، مەخرەجنى مەخرەجگە كۆپەيتىش ئارقىلىق \frac{7}{4} نى \frac{6}{13} گە كۆپەيتىڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە ئاددىيلاشتۇرۇڭ.
x=\frac{43}{13}
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق \frac{5}{2} نى \frac{21}{26} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
x=\frac{43}{13},y=\frac{6}{13}
سىستېما ھەل قىلىندى.
4x-7y=10,-3x+2y=-9
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}4&-7\\-3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\-9\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}4&-7\\-3&2\end{matrix}\right))\left(\begin{matrix}4&-7\\-3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-7\\-3&2\end{matrix}\right))\left(\begin{matrix}10\\-9\end{matrix}\right)
\left(\begin{matrix}4&-7\\-3&2\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-7\\-3&2\end{matrix}\right))\left(\begin{matrix}10\\-9\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-7\\-3&2\end{matrix}\right))\left(\begin{matrix}10\\-9\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{4\times 2-\left(-7\left(-3\right)\right)}&-\frac{-7}{4\times 2-\left(-7\left(-3\right)\right)}\\-\frac{-3}{4\times 2-\left(-7\left(-3\right)\right)}&\frac{4}{4\times 2-\left(-7\left(-3\right)\right)}\end{matrix}\right)\left(\begin{matrix}10\\-9\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{13}&-\frac{7}{13}\\-\frac{3}{13}&-\frac{4}{13}\end{matrix}\right)\left(\begin{matrix}10\\-9\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{13}\times 10-\frac{7}{13}\left(-9\right)\\-\frac{3}{13}\times 10-\frac{4}{13}\left(-9\right)\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{43}{13}\\\frac{6}{13}\end{matrix}\right)
ھېسابلاڭ.
x=\frac{43}{13},y=\frac{6}{13}
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
4x-7y=10,-3x+2y=-9
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
-3\times 4x-3\left(-7\right)y=-3\times 10,4\left(-3\right)x+4\times 2y=4\left(-9\right)
4x بىلەن -3x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى -3 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى 4 گە كۆپەيتىڭ.
-12x+21y=-30,-12x+8y=-36
ئاددىيلاشتۇرۇڭ.
-12x+12x+21y-8y=-30+36
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق -12x+21y=-30 دىن -12x+8y=-36 نى ئېلىڭ.
21y-8y=-30+36
-12x نى 12x گە قوشۇڭ. -12x بىلەن 12x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
13y=-30+36
21y نى -8y گە قوشۇڭ.
13y=6
-30 نى 36 گە قوشۇڭ.
y=\frac{6}{13}
ھەر ئىككى تەرەپنى 13 گە بۆلۈڭ.
-3x+2\times \frac{6}{13}=-9
-3x+2y=-9 دە \frac{6}{13} نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
-3x+\frac{12}{13}=-9
2 نى \frac{6}{13} كە كۆپەيتىڭ.
-3x=-\frac{129}{13}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{12}{13} نى ئېلىڭ.
x=\frac{43}{13}
ھەر ئىككى تەرەپنى -3 گە بۆلۈڭ.
x=\frac{43}{13},y=\frac{6}{13}
سىستېما ھەل قىلىندى.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}