x، y نى يېشىش
x=2
y=3
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
4x+3y=17,3x-4y+6=0
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
4x+3y=17
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
4x=-3y+17
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 3y نى ئېلىڭ.
x=\frac{1}{4}\left(-3y+17\right)
ھەر ئىككى تەرەپنى 4 گە بۆلۈڭ.
x=-\frac{3}{4}y+\frac{17}{4}
\frac{1}{4} نى -3y+17 كە كۆپەيتىڭ.
3\left(-\frac{3}{4}y+\frac{17}{4}\right)-4y+6=0
يەنە بىر تەڭلىمە 3x-4y+6=0 دىكى x نىڭ ئورنىغا \frac{-3y+17}{4} نى ئالماشتۇرۇڭ.
-\frac{9}{4}y+\frac{51}{4}-4y+6=0
3 نى \frac{-3y+17}{4} كە كۆپەيتىڭ.
-\frac{25}{4}y+\frac{51}{4}+6=0
-\frac{9y}{4} نى -4y گە قوشۇڭ.
-\frac{25}{4}y+\frac{75}{4}=0
\frac{51}{4} نى 6 گە قوشۇڭ.
-\frac{25}{4}y=-\frac{75}{4}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{75}{4} نى ئېلىڭ.
y=3
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى -\frac{25}{4} گە، يەنى كەسىرنىڭ ئەكس سانى ئارقىلىق ھەر ئىككى تەرەپنى كۆپەيتىدىغان سانغا بۆلۈڭ.
x=-\frac{3}{4}\times 3+\frac{17}{4}
x=-\frac{3}{4}y+\frac{17}{4} دە 3 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=\frac{-9+17}{4}
-\frac{3}{4} نى 3 كە كۆپەيتىڭ.
x=2
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق \frac{17}{4} نى -\frac{9}{4} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
x=2,y=3
سىستېما ھەل قىلىندى.
4x+3y=17,3x-4y+6=0
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}4&3\\3&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}17\\-6\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}4&3\\3&-4\end{matrix}\right))\left(\begin{matrix}4&3\\3&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\3&-4\end{matrix}\right))\left(\begin{matrix}17\\-6\end{matrix}\right)
\left(\begin{matrix}4&3\\3&-4\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\3&-4\end{matrix}\right))\left(\begin{matrix}17\\-6\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\3&-4\end{matrix}\right))\left(\begin{matrix}17\\-6\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{4\left(-4\right)-3\times 3}&-\frac{3}{4\left(-4\right)-3\times 3}\\-\frac{3}{4\left(-4\right)-3\times 3}&\frac{4}{4\left(-4\right)-3\times 3}\end{matrix}\right)\left(\begin{matrix}17\\-6\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{25}&\frac{3}{25}\\\frac{3}{25}&-\frac{4}{25}\end{matrix}\right)\left(\begin{matrix}17\\-6\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{25}\times 17+\frac{3}{25}\left(-6\right)\\\frac{3}{25}\times 17-\frac{4}{25}\left(-6\right)\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\3\end{matrix}\right)
ھېسابلاڭ.
x=2,y=3
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
4x+3y=17,3x-4y+6=0
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
3\times 4x+3\times 3y=3\times 17,4\times 3x+4\left(-4\right)y+4\times 6=0
4x بىلەن 3x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى 3 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى 4 گە كۆپەيتىڭ.
12x+9y=51,12x-16y+24=0
ئاددىيلاشتۇرۇڭ.
12x-12x+9y+16y-24=51
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق 12x+9y=51 دىن 12x-16y+24=0 نى ئېلىڭ.
9y+16y-24=51
12x نى -12x گە قوشۇڭ. 12x بىلەن -12x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
25y-24=51
9y نى 16y گە قوشۇڭ.
25y=75
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 24 نى قوشۇڭ.
y=3
ھەر ئىككى تەرەپنى 25 گە بۆلۈڭ.
3x-4\times 3+6=0
3x-4y+6=0 دە 3 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
3x-12+6=0
-4 نى 3 كە كۆپەيتىڭ.
3x-6=0
-12 نى 6 گە قوشۇڭ.
3x=6
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 6 نى قوشۇڭ.
x=2
ھەر ئىككى تەرەپنى 3 گە بۆلۈڭ.
x=2,y=3
سىستېما ھەل قىلىندى.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}