x، y نى يېشىش
x = -\frac{40}{7} = -5\frac{5}{7} \approx -5.714285714
y = \frac{305}{7} = 43\frac{4}{7} \approx 43.571428571
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
22x+3y=5,3x+2y=70
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
22x+3y=5
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
22x=-3y+5
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 3y نى ئېلىڭ.
x=\frac{1}{22}\left(-3y+5\right)
ھەر ئىككى تەرەپنى 22 گە بۆلۈڭ.
x=-\frac{3}{22}y+\frac{5}{22}
\frac{1}{22} نى -3y+5 كە كۆپەيتىڭ.
3\left(-\frac{3}{22}y+\frac{5}{22}\right)+2y=70
يەنە بىر تەڭلىمە 3x+2y=70 دىكى x نىڭ ئورنىغا \frac{-3y+5}{22} نى ئالماشتۇرۇڭ.
-\frac{9}{22}y+\frac{15}{22}+2y=70
3 نى \frac{-3y+5}{22} كە كۆپەيتىڭ.
\frac{35}{22}y+\frac{15}{22}=70
-\frac{9y}{22} نى 2y گە قوشۇڭ.
\frac{35}{22}y=\frac{1525}{22}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{15}{22} نى ئېلىڭ.
y=\frac{305}{7}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى \frac{35}{22} گە، يەنى كەسىرنىڭ ئەكس سانى ئارقىلىق ھەر ئىككى تەرەپنى كۆپەيتىدىغان سانغا بۆلۈڭ.
x=-\frac{3}{22}\times \frac{305}{7}+\frac{5}{22}
x=-\frac{3}{22}y+\frac{5}{22} دە \frac{305}{7} نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=-\frac{915}{154}+\frac{5}{22}
سۈرەتنى سۈرەتكە، مەخرەجنى مەخرەجگە كۆپەيتىش ئارقىلىق -\frac{3}{22} نى \frac{305}{7} گە كۆپەيتىڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە ئاددىيلاشتۇرۇڭ.
x=-\frac{40}{7}
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق \frac{5}{22} نى -\frac{915}{154} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
x=-\frac{40}{7},y=\frac{305}{7}
سىستېما ھەل قىلىندى.
22x+3y=5,3x+2y=70
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}22&3\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\70\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}22&3\\3&2\end{matrix}\right))\left(\begin{matrix}22&3\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}22&3\\3&2\end{matrix}\right))\left(\begin{matrix}5\\70\end{matrix}\right)
\left(\begin{matrix}22&3\\3&2\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}22&3\\3&2\end{matrix}\right))\left(\begin{matrix}5\\70\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}22&3\\3&2\end{matrix}\right))\left(\begin{matrix}5\\70\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{22\times 2-3\times 3}&-\frac{3}{22\times 2-3\times 3}\\-\frac{3}{22\times 2-3\times 3}&\frac{22}{22\times 2-3\times 3}\end{matrix}\right)\left(\begin{matrix}5\\70\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{35}&-\frac{3}{35}\\-\frac{3}{35}&\frac{22}{35}\end{matrix}\right)\left(\begin{matrix}5\\70\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{35}\times 5-\frac{3}{35}\times 70\\-\frac{3}{35}\times 5+\frac{22}{35}\times 70\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{40}{7}\\\frac{305}{7}\end{matrix}\right)
ھېسابلاڭ.
x=-\frac{40}{7},y=\frac{305}{7}
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
22x+3y=5,3x+2y=70
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
3\times 22x+3\times 3y=3\times 5,22\times 3x+22\times 2y=22\times 70
22x بىلەن 3x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى 3 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى 22 گە كۆپەيتىڭ.
66x+9y=15,66x+44y=1540
ئاددىيلاشتۇرۇڭ.
66x-66x+9y-44y=15-1540
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق 66x+9y=15 دىن 66x+44y=1540 نى ئېلىڭ.
9y-44y=15-1540
66x نى -66x گە قوشۇڭ. 66x بىلەن -66x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
-35y=15-1540
9y نى -44y گە قوشۇڭ.
-35y=-1525
15 نى -1540 گە قوشۇڭ.
y=\frac{305}{7}
ھەر ئىككى تەرەپنى -35 گە بۆلۈڭ.
3x+2\times \frac{305}{7}=70
3x+2y=70 دە \frac{305}{7} نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
3x+\frac{610}{7}=70
2 نى \frac{305}{7} كە كۆپەيتىڭ.
3x=-\frac{120}{7}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{610}{7} نى ئېلىڭ.
x=-\frac{40}{7}
ھەر ئىككى تەرەپنى 3 گە بۆلۈڭ.
x=-\frac{40}{7},y=\frac{305}{7}
سىستېما ھەل قىلىندى.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}