x، y نى يېشىش
x=7
y=13
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
\frac{1}{2}\left(x+1\right)+\frac{1}{3}\left(y-1\right)=8,\frac{1}{3}\left(x-1\right)+\frac{1}{2}\left(y+1\right)=9
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
\frac{1}{2}\left(x+1\right)+\frac{1}{3}\left(y-1\right)=8
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
\frac{1}{2}x+\frac{1}{2}+\frac{1}{3}\left(y-1\right)=8
\frac{1}{2} نى x+1 كە كۆپەيتىڭ.
\frac{1}{2}x+\frac{1}{2}+\frac{1}{3}y-\frac{1}{3}=8
\frac{1}{3} نى y-1 كە كۆپەيتىڭ.
\frac{1}{2}x+\frac{1}{3}y+\frac{1}{6}=8
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق \frac{1}{2} نى -\frac{1}{3} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
\frac{1}{2}x+\frac{1}{3}y=\frac{47}{6}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{1}{6} نى ئېلىڭ.
\frac{1}{2}x=-\frac{1}{3}y+\frac{47}{6}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{y}{3} نى ئېلىڭ.
x=2\left(-\frac{1}{3}y+\frac{47}{6}\right)
ھەر ئىككى تەرەپنى 2 گە كۆپەيتىڭ.
x=-\frac{2}{3}y+\frac{47}{3}
2 نى -\frac{y}{3}+\frac{47}{6} كە كۆپەيتىڭ.
\frac{1}{3}\left(-\frac{2}{3}y+\frac{47}{3}-1\right)+\frac{1}{2}\left(y+1\right)=9
يەنە بىر تەڭلىمە \frac{1}{3}\left(x-1\right)+\frac{1}{2}\left(y+1\right)=9 دىكى x نىڭ ئورنىغا \frac{-2y+47}{3} نى ئالماشتۇرۇڭ.
\frac{1}{3}\left(-\frac{2}{3}y+\frac{44}{3}\right)+\frac{1}{2}\left(y+1\right)=9
\frac{47}{3} نى -1 گە قوشۇڭ.
-\frac{2}{9}y+\frac{44}{9}+\frac{1}{2}\left(y+1\right)=9
\frac{1}{3} نى \frac{-2y+44}{3} كە كۆپەيتىڭ.
-\frac{2}{9}y+\frac{44}{9}+\frac{1}{2}y+\frac{1}{2}=9
\frac{1}{2} نى y+1 كە كۆپەيتىڭ.
\frac{5}{18}y+\frac{44}{9}+\frac{1}{2}=9
-\frac{2y}{9} نى \frac{y}{2} گە قوشۇڭ.
\frac{5}{18}y+\frac{97}{18}=9
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق \frac{44}{9} نى \frac{1}{2} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
\frac{5}{18}y=\frac{65}{18}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{97}{18} نى ئېلىڭ.
y=13
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى \frac{5}{18} گە، يەنى كەسىرنىڭ ئەكس سانى ئارقىلىق ھەر ئىككى تەرەپنى كۆپەيتىدىغان سانغا بۆلۈڭ.
x=-\frac{2}{3}\times 13+\frac{47}{3}
x=-\frac{2}{3}y+\frac{47}{3} دە 13 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=\frac{-26+47}{3}
-\frac{2}{3} نى 13 كە كۆپەيتىڭ.
x=7
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق \frac{47}{3} نى -\frac{26}{3} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
x=7,y=13
سىستېما ھەل قىلىندى.
\frac{1}{2}\left(x+1\right)+\frac{1}{3}\left(y-1\right)=8,\frac{1}{3}\left(x-1\right)+\frac{1}{2}\left(y+1\right)=9
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\frac{1}{2}\left(x+1\right)+\frac{1}{3}\left(y-1\right)=8
بىرىنچى تەڭلىمىنى ئاددىيلاشتۇرۇپ، ئۆلچەملىك شەكىلگە كەلتۈرۈڭ.
\frac{1}{2}x+\frac{1}{2}+\frac{1}{3}\left(y-1\right)=8
\frac{1}{2} نى x+1 كە كۆپەيتىڭ.
\frac{1}{2}x+\frac{1}{2}+\frac{1}{3}y-\frac{1}{3}=8
\frac{1}{3} نى y-1 كە كۆپەيتىڭ.
\frac{1}{2}x+\frac{1}{3}y+\frac{1}{6}=8
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق \frac{1}{2} نى -\frac{1}{3} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
\frac{1}{2}x+\frac{1}{3}y=\frac{47}{6}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{1}{6} نى ئېلىڭ.
\frac{1}{3}\left(x-1\right)+\frac{1}{2}\left(y+1\right)=9
ئىككىنچى تەڭلىمىنى ئاددىيلاشتۇرۇپ، ئۆلچەملىك شەكىلگە كەلتۈرۈڭ.
\frac{1}{3}x-\frac{1}{3}+\frac{1}{2}\left(y+1\right)=9
\frac{1}{3} نى x-1 كە كۆپەيتىڭ.
\frac{1}{3}x-\frac{1}{3}+\frac{1}{2}y+\frac{1}{2}=9
\frac{1}{2} نى y+1 كە كۆپەيتىڭ.
\frac{1}{3}x+\frac{1}{2}y+\frac{1}{6}=9
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق -\frac{1}{3} نى \frac{1}{2} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
\frac{1}{3}x+\frac{1}{2}y=\frac{53}{6}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{1}{6} نى ئېلىڭ.
\left(\begin{matrix}\frac{1}{2}&\frac{1}{3}\\\frac{1}{3}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{47}{6}\\\frac{53}{6}\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}\frac{1}{2}&\frac{1}{3}\\\frac{1}{3}&\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}\frac{1}{2}&\frac{1}{3}\\\frac{1}{3}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{2}&\frac{1}{3}\\\frac{1}{3}&\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}\frac{47}{6}\\\frac{53}{6}\end{matrix}\right)
\left(\begin{matrix}\frac{1}{2}&\frac{1}{3}\\\frac{1}{3}&\frac{1}{2}\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{2}&\frac{1}{3}\\\frac{1}{3}&\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}\frac{47}{6}\\\frac{53}{6}\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{2}&\frac{1}{3}\\\frac{1}{3}&\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}\frac{47}{6}\\\frac{53}{6}\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{\frac{1}{2}}{\frac{1}{2}\times \frac{1}{2}-\frac{1}{3}\times \frac{1}{3}}&-\frac{\frac{1}{3}}{\frac{1}{2}\times \frac{1}{2}-\frac{1}{3}\times \frac{1}{3}}\\-\frac{\frac{1}{3}}{\frac{1}{2}\times \frac{1}{2}-\frac{1}{3}\times \frac{1}{3}}&\frac{\frac{1}{2}}{\frac{1}{2}\times \frac{1}{2}-\frac{1}{3}\times \frac{1}{3}}\end{matrix}\right)\left(\begin{matrix}\frac{47}{6}\\\frac{53}{6}\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{18}{5}&-\frac{12}{5}\\-\frac{12}{5}&\frac{18}{5}\end{matrix}\right)\left(\begin{matrix}\frac{47}{6}\\\frac{53}{6}\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{18}{5}\times \frac{47}{6}-\frac{12}{5}\times \frac{53}{6}\\-\frac{12}{5}\times \frac{47}{6}+\frac{18}{5}\times \frac{53}{6}\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\13\end{matrix}\right)
ھېسابلاڭ.
x=7,y=13
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}