\left. \begin{array} { l } { y ( y + 3 ) - 21 } \\ { y ^ { 2 } + 3 y + 21 } \\ { y ^ { 2 } + 3 y - 21 } \\ { y ^ { 2 } + 21 } \\ { y ( y + 3 ) ( y + 7 ) } \\ { ( y - 3 ) ( y - 7 ) } \end{array} \right.
ئەڭ كىچىك ئومۇمىي ھەسسىلىك
y\left(y^{10}+6y^{9}-28y^{8}-222y^{7}-1551y^{6}-4662y^{5}+18585y^{4}+55566y^{3}+426006y^{2}-4084101\right)
ھېسابلاش
y\left(y+3\right)-21,\ y^{2}+3y+21,\ y^{2}+3y-21,\ y^{2}+21,\ y\left(y+3\right)\left(y+7\right),\ \left(y-7\right)\left(y-3\right)
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
y\left(y+3\right)-21=\left(y-\left(-\frac{1}{2}\sqrt{93}-\frac{3}{2}\right)\right)\left(y-\left(\frac{1}{2}\sqrt{93}-\frac{3}{2}\right)\right) y^{2}+3y-21=\left(y-\left(-\frac{1}{2}\sqrt{93}-\frac{3}{2}\right)\right)\left(y-\left(\frac{1}{2}\sqrt{93}-\frac{3}{2}\right)\right)
كۆپەيتىلمىگەن ئىپادىلەرنى كۆپەيتىڭ.
y\left(y^{10}+6y^{9}-28y^{8}-222y^{7}-1551y^{6}-4662y^{5}+18585y^{4}+55566y^{3}+426006y^{2}-4084101\right)
ئىپادىدىكى بارلىق كۆپەيتكۈچى ۋە ئۇلارنىڭ ئەڭ يۇقىرى دەرىجىسىنى ئايرىڭ. بۇ كۆپەيتكۈچىلەرنىڭ ئەڭ يۇقىرى دەرىجىسىنى كۆپەيتىپ، ئۇلارنىڭ ئەڭ كىچىك ئومۇمىي ھەسسىلىكىنى تېپىڭ.
y^{11}+6y^{10}-28y^{9}-222y^{8}-1551y^{7}-4662y^{6}+18585y^{5}+55566y^{4}+426006y^{3}-4084101y
ئىپادىنى يېيىڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}