ئاساسىي مەزمۇنغا ئاتلاش
y، x نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

y-x=-3
بىرىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. ھەر ئىككى تەرەپتىن x نى ئېلىڭ.
y+x=6
ئىككىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. x نى ھەر ئىككى تەرەپكە قوشۇڭ.
y-x=-3,y+x=6
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
y-x=-3
تەڭلىمىدىن بىرنى تالاپ، y نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق y نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
y=x-3
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە x نى قوشۇڭ.
x-3+x=6
يەنە بىر تەڭلىمە y+x=6 دىكى y نىڭ ئورنىغا x-3 نى ئالماشتۇرۇڭ.
2x-3=6
x نى x گە قوشۇڭ.
2x=9
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 3 نى قوشۇڭ.
x=\frac{9}{2}
ھەر ئىككى تەرەپنى 2 گە بۆلۈڭ.
y=\frac{9}{2}-3
y=x-3 دە \frac{9}{2} نى x گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، y نى بىۋاسىتە يېشەلەيسىز.
y=\frac{3}{2}
-3 نى \frac{9}{2} گە قوشۇڭ.
y=\frac{3}{2},x=\frac{9}{2}
سىستېما ھەل قىلىندى.
y-x=-3
بىرىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. ھەر ئىككى تەرەپتىن x نى ئېلىڭ.
y+x=6
ئىككىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. x نى ھەر ئىككى تەرەپكە قوشۇڭ.
y-x=-3,y+x=6
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}1&-1\\1&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-3\\6\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}1&-1\\1&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}-3\\6\end{matrix}\right)
\left(\begin{matrix}1&-1\\1&1\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}-3\\6\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}-3\\6\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-1\right)}&-\frac{-1}{1-\left(-1\right)}\\-\frac{1}{1-\left(-1\right)}&\frac{1}{1-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}-3\\6\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{2}\\-\frac{1}{2}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}-3\\6\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\left(-3\right)+\frac{1}{2}\times 6\\-\frac{1}{2}\left(-3\right)+\frac{1}{2}\times 6\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2}\\\frac{9}{2}\end{matrix}\right)
ھېسابلاڭ.
y=\frac{3}{2},x=\frac{9}{2}
ماترىتسا ئېلېمېنتلىرى y ۋە x نى يېيىڭ.
y-x=-3
بىرىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. ھەر ئىككى تەرەپتىن x نى ئېلىڭ.
y+x=6
ئىككىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. x نى ھەر ئىككى تەرەپكە قوشۇڭ.
y-x=-3,y+x=6
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
y-y-x-x=-3-6
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق y-x=-3 دىن y+x=6 نى ئېلىڭ.
-x-x=-3-6
y نى -y گە قوشۇڭ. y بىلەن -y يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
-2x=-3-6
-x نى -x گە قوشۇڭ.
-2x=-9
-3 نى -6 گە قوشۇڭ.
x=\frac{9}{2}
ھەر ئىككى تەرەپنى -2 گە بۆلۈڭ.
y+\frac{9}{2}=6
y+x=6 دە \frac{9}{2} نى x گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، y نى بىۋاسىتە يېشەلەيسىز.
y=\frac{3}{2}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{9}{2} نى ئېلىڭ.
y=\frac{3}{2},x=\frac{9}{2}
سىستېما ھەل قىلىندى.