ئاساسىي مەزمۇنغا ئاتلاش
y، x نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

y-x=6
بىرىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. ھەر ئىككى تەرەپتىن x نى ئېلىڭ.
y+3x=2
ئىككىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. 3x نى ھەر ئىككى تەرەپكە قوشۇڭ.
y-x=6,y+3x=2
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
y-x=6
تەڭلىمىدىن بىرنى تالاپ، y نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق y نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
y=x+6
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە x نى قوشۇڭ.
x+6+3x=2
يەنە بىر تەڭلىمە y+3x=2 دىكى y نىڭ ئورنىغا x+6 نى ئالماشتۇرۇڭ.
4x+6=2
x نى 3x گە قوشۇڭ.
4x=-4
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 6 نى ئېلىڭ.
x=-1
ھەر ئىككى تەرەپنى 4 گە بۆلۈڭ.
y=-1+6
y=x+6 دە -1 نى x گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، y نى بىۋاسىتە يېشەلەيسىز.
y=5
6 نى -1 گە قوشۇڭ.
y=5,x=-1
سىستېما ھەل قىلىندى.
y-x=6
بىرىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. ھەر ئىككى تەرەپتىن x نى ئېلىڭ.
y+3x=2
ئىككىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. 3x نى ھەر ئىككى تەرەپكە قوشۇڭ.
y-x=6,y+3x=2
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}1&-1\\1&3\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}6\\2\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}1&-1\\1&3\end{matrix}\right))\left(\begin{matrix}1&-1\\1&3\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&3\end{matrix}\right))\left(\begin{matrix}6\\2\end{matrix}\right)
\left(\begin{matrix}1&-1\\1&3\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&3\end{matrix}\right))\left(\begin{matrix}6\\2\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&3\end{matrix}\right))\left(\begin{matrix}6\\2\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3-\left(-1\right)}&-\frac{-1}{3-\left(-1\right)}\\-\frac{1}{3-\left(-1\right)}&\frac{1}{3-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}6\\2\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4}&\frac{1}{4}\\-\frac{1}{4}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}6\\2\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4}\times 6+\frac{1}{4}\times 2\\-\frac{1}{4}\times 6+\frac{1}{4}\times 2\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}5\\-1\end{matrix}\right)
ھېسابلاڭ.
y=5,x=-1
ماترىتسا ئېلېمېنتلىرى y ۋە x نى يېيىڭ.
y-x=6
بىرىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. ھەر ئىككى تەرەپتىن x نى ئېلىڭ.
y+3x=2
ئىككىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. 3x نى ھەر ئىككى تەرەپكە قوشۇڭ.
y-x=6,y+3x=2
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
y-y-x-3x=6-2
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق y-x=6 دىن y+3x=2 نى ئېلىڭ.
-x-3x=6-2
y نى -y گە قوشۇڭ. y بىلەن -y يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
-4x=6-2
-x نى -3x گە قوشۇڭ.
-4x=4
6 نى -2 گە قوشۇڭ.
x=-1
ھەر ئىككى تەرەپنى -4 گە بۆلۈڭ.
y+3\left(-1\right)=2
y+3x=2 دە -1 نى x گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، y نى بىۋاسىتە يېشەلەيسىز.
y-3=2
3 نى -1 كە كۆپەيتىڭ.
y=5
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 3 نى قوشۇڭ.
y=5,x=-1
سىستېما ھەل قىلىندى.