ئاساسىي مەزمۇنغا ئاتلاش
y، x نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

y-4x=2
بىرىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. ھەر ئىككى تەرەپتىن 4x نى ئېلىڭ.
y+2x=-4
ئىككىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. 2x نى ھەر ئىككى تەرەپكە قوشۇڭ.
y-4x=2,y+2x=-4
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
y-4x=2
تەڭلىمىدىن بىرنى تالاپ، y نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق y نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
y=4x+2
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 4x نى قوشۇڭ.
4x+2+2x=-4
يەنە بىر تەڭلىمە y+2x=-4 دىكى y نىڭ ئورنىغا 4x+2 نى ئالماشتۇرۇڭ.
6x+2=-4
4x نى 2x گە قوشۇڭ.
6x=-6
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 2 نى ئېلىڭ.
x=-1
ھەر ئىككى تەرەپنى 6 گە بۆلۈڭ.
y=4\left(-1\right)+2
y=4x+2 دە -1 نى x گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، y نى بىۋاسىتە يېشەلەيسىز.
y=-4+2
4 نى -1 كە كۆپەيتىڭ.
y=-2
2 نى -4 گە قوشۇڭ.
y=-2,x=-1
سىستېما ھەل قىلىندى.
y-4x=2
بىرىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. ھەر ئىككى تەرەپتىن 4x نى ئېلىڭ.
y+2x=-4
ئىككىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. 2x نى ھەر ئىككى تەرەپكە قوشۇڭ.
y-4x=2,y+2x=-4
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}1&-4\\1&2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}2\\-4\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}1&-4\\1&2\end{matrix}\right))\left(\begin{matrix}1&-4\\1&2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\1&2\end{matrix}\right))\left(\begin{matrix}2\\-4\end{matrix}\right)
\left(\begin{matrix}1&-4\\1&2\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\1&2\end{matrix}\right))\left(\begin{matrix}2\\-4\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\1&2\end{matrix}\right))\left(\begin{matrix}2\\-4\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2-\left(-4\right)}&-\frac{-4}{2-\left(-4\right)}\\-\frac{1}{2-\left(-4\right)}&\frac{1}{2-\left(-4\right)}\end{matrix}\right)\left(\begin{matrix}2\\-4\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&\frac{2}{3}\\-\frac{1}{6}&\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}2\\-4\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\times 2+\frac{2}{3}\left(-4\right)\\-\frac{1}{6}\times 2+\frac{1}{6}\left(-4\right)\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-2\\-1\end{matrix}\right)
ھېسابلاڭ.
y=-2,x=-1
ماترىتسا ئېلېمېنتلىرى y ۋە x نى يېيىڭ.
y-4x=2
بىرىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. ھەر ئىككى تەرەپتىن 4x نى ئېلىڭ.
y+2x=-4
ئىككىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. 2x نى ھەر ئىككى تەرەپكە قوشۇڭ.
y-4x=2,y+2x=-4
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
y-y-4x-2x=2+4
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق y-4x=2 دىن y+2x=-4 نى ئېلىڭ.
-4x-2x=2+4
y نى -y گە قوشۇڭ. y بىلەن -y يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
-6x=2+4
-4x نى -2x گە قوشۇڭ.
-6x=6
2 نى 4 گە قوشۇڭ.
x=-1
ھەر ئىككى تەرەپنى -6 گە بۆلۈڭ.
y+2\left(-1\right)=-4
y+2x=-4 دە -1 نى x گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، y نى بىۋاسىتە يېشەلەيسىز.
y-2=-4
2 نى -1 كە كۆپەيتىڭ.
y=-2
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 2 نى قوشۇڭ.
y=-2,x=-1
سىستېما ھەل قىلىندى.