ئاساسىي مەزمۇنغا ئاتلاش
y، x نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

y-2x=-4
بىرىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. ھەر ئىككى تەرەپتىن 2x نى ئېلىڭ.
y-4x=-2
ئىككىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. ھەر ئىككى تەرەپتىن 4x نى ئېلىڭ.
y-2x=-4,y-4x=-2
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
y-2x=-4
تەڭلىمىدىن بىرنى تالاپ، y نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق y نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
y=2x-4
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 2x نى قوشۇڭ.
2x-4-4x=-2
يەنە بىر تەڭلىمە y-4x=-2 دىكى y نىڭ ئورنىغا -4+2x نى ئالماشتۇرۇڭ.
-2x-4=-2
2x نى -4x گە قوشۇڭ.
-2x=2
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 4 نى قوشۇڭ.
x=-1
ھەر ئىككى تەرەپنى -2 گە بۆلۈڭ.
y=2\left(-1\right)-4
y=2x-4 دە -1 نى x گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، y نى بىۋاسىتە يېشەلەيسىز.
y=-2-4
2 نى -1 كە كۆپەيتىڭ.
y=-6
-4 نى -2 گە قوشۇڭ.
y=-6,x=-1
سىستېما ھەل قىلىندى.
y-2x=-4
بىرىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. ھەر ئىككى تەرەپتىن 2x نى ئېلىڭ.
y-4x=-2
ئىككىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. ھەر ئىككى تەرەپتىن 4x نى ئېلىڭ.
y-2x=-4,y-4x=-2
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}1&-2\\1&-4\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-4\\-2\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}1&-2\\1&-4\end{matrix}\right))\left(\begin{matrix}1&-2\\1&-4\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&-4\end{matrix}\right))\left(\begin{matrix}-4\\-2\end{matrix}\right)
\left(\begin{matrix}1&-2\\1&-4\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&-4\end{matrix}\right))\left(\begin{matrix}-4\\-2\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&-4\end{matrix}\right))\left(\begin{matrix}-4\\-2\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{-4-\left(-2\right)}&-\frac{-2}{-4-\left(-2\right)}\\-\frac{1}{-4-\left(-2\right)}&\frac{1}{-4-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}-4\\-2\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}2&-1\\\frac{1}{2}&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}-4\\-2\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}2\left(-4\right)-\left(-2\right)\\\frac{1}{2}\left(-4\right)-\frac{1}{2}\left(-2\right)\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-6\\-1\end{matrix}\right)
ھېسابلاڭ.
y=-6,x=-1
ماترىتسا ئېلېمېنتلىرى y ۋە x نى يېيىڭ.
y-2x=-4
بىرىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. ھەر ئىككى تەرەپتىن 2x نى ئېلىڭ.
y-4x=-2
ئىككىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. ھەر ئىككى تەرەپتىن 4x نى ئېلىڭ.
y-2x=-4,y-4x=-2
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
y-y-2x+4x=-4+2
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق y-2x=-4 دىن y-4x=-2 نى ئېلىڭ.
-2x+4x=-4+2
y نى -y گە قوشۇڭ. y بىلەن -y يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
2x=-4+2
-2x نى 4x گە قوشۇڭ.
2x=-2
-4 نى 2 گە قوشۇڭ.
x=-1
ھەر ئىككى تەرەپنى 2 گە بۆلۈڭ.
y-4\left(-1\right)=-2
y-4x=-2 دە -1 نى x گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، y نى بىۋاسىتە يېشەلەيسىز.
y+4=-2
-4 نى -1 كە كۆپەيتىڭ.
y=-6
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 4 نى ئېلىڭ.
y=-6,x=-1
سىستېما ھەل قىلىندى.