y، x نى يېشىش
x=-1
y=-5
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
y-2x=-3
بىرىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. ھەر ئىككى تەرەپتىن 2x نى ئېلىڭ.
y-2x=-3,y+x=-6
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
y-2x=-3
تەڭلىمىدىن بىرنى تالاپ، y نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق y نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
y=2x-3
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 2x نى قوشۇڭ.
2x-3+x=-6
يەنە بىر تەڭلىمە y+x=-6 دىكى y نىڭ ئورنىغا 2x-3 نى ئالماشتۇرۇڭ.
3x-3=-6
2x نى x گە قوشۇڭ.
3x=-3
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 3 نى قوشۇڭ.
x=-1
ھەر ئىككى تەرەپنى 3 گە بۆلۈڭ.
y=2\left(-1\right)-3
y=2x-3 دە -1 نى x گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، y نى بىۋاسىتە يېشەلەيسىز.
y=-2-3
2 نى -1 كە كۆپەيتىڭ.
y=-5
-3 نى -2 گە قوشۇڭ.
y=-5,x=-1
سىستېما ھەل قىلىندى.
y-2x=-3
بىرىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. ھەر ئىككى تەرەپتىن 2x نى ئېلىڭ.
y-2x=-3,y+x=-6
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}1&-2\\1&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-3\\-6\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}1&-2\\1&1\end{matrix}\right))\left(\begin{matrix}1&-2\\1&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&1\end{matrix}\right))\left(\begin{matrix}-3\\-6\end{matrix}\right)
\left(\begin{matrix}1&-2\\1&1\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&1\end{matrix}\right))\left(\begin{matrix}-3\\-6\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&1\end{matrix}\right))\left(\begin{matrix}-3\\-6\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-2\right)}&-\frac{-2}{1-\left(-2\right)}\\-\frac{1}{1-\left(-2\right)}&\frac{1}{1-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}-3\\-6\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&\frac{2}{3}\\-\frac{1}{3}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}-3\\-6\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\left(-3\right)+\frac{2}{3}\left(-6\right)\\-\frac{1}{3}\left(-3\right)+\frac{1}{3}\left(-6\right)\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-5\\-1\end{matrix}\right)
ھېسابلاڭ.
y=-5,x=-1
ماترىتسا ئېلېمېنتلىرى y ۋە x نى يېيىڭ.
y-2x=-3
بىرىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. ھەر ئىككى تەرەپتىن 2x نى ئېلىڭ.
y-2x=-3,y+x=-6
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
y-y-2x-x=-3+6
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق y-2x=-3 دىن y+x=-6 نى ئېلىڭ.
-2x-x=-3+6
y نى -y گە قوشۇڭ. y بىلەن -y يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
-3x=-3+6
-2x نى -x گە قوشۇڭ.
-3x=3
-3 نى 6 گە قوشۇڭ.
x=-1
ھەر ئىككى تەرەپنى -3 گە بۆلۈڭ.
y-1=-6
y+x=-6 دە -1 نى x گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، y نى بىۋاسىتە يېشەلەيسىز.
y=-5
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 1 نى قوشۇڭ.
y=-5,x=-1
سىستېما ھەل قىلىندى.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}