ئاساسىي مەزمۇنغا ئاتلاش
y، x نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

y+4x=2
بىرىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. 4x نى ھەر ئىككى تەرەپكە قوشۇڭ.
y+2x=-2
ئىككىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. 2x نى ھەر ئىككى تەرەپكە قوشۇڭ.
y+4x=2,y+2x=-2
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
y+4x=2
تەڭلىمىدىن بىرنى تالاپ، y نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق y نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
y=-4x+2
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 4x نى ئېلىڭ.
-4x+2+2x=-2
يەنە بىر تەڭلىمە y+2x=-2 دىكى y نىڭ ئورنىغا -4x+2 نى ئالماشتۇرۇڭ.
-2x+2=-2
-4x نى 2x گە قوشۇڭ.
-2x=-4
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 2 نى ئېلىڭ.
x=2
ھەر ئىككى تەرەپنى -2 گە بۆلۈڭ.
y=-4\times 2+2
y=-4x+2 دە 2 نى x گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، y نى بىۋاسىتە يېشەلەيسىز.
y=-8+2
-4 نى 2 كە كۆپەيتىڭ.
y=-6
2 نى -8 گە قوشۇڭ.
y=-6,x=2
سىستېما ھەل قىلىندى.
y+4x=2
بىرىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. 4x نى ھەر ئىككى تەرەپكە قوشۇڭ.
y+2x=-2
ئىككىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. 2x نى ھەر ئىككى تەرەپكە قوشۇڭ.
y+4x=2,y+2x=-2
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}1&4\\1&2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}2\\-2\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}1&4\\1&2\end{matrix}\right))\left(\begin{matrix}1&4\\1&2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\1&2\end{matrix}\right))\left(\begin{matrix}2\\-2\end{matrix}\right)
\left(\begin{matrix}1&4\\1&2\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\1&2\end{matrix}\right))\left(\begin{matrix}2\\-2\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\1&2\end{matrix}\right))\left(\begin{matrix}2\\-2\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2-4}&-\frac{4}{2-4}\\-\frac{1}{2-4}&\frac{1}{2-4}\end{matrix}\right)\left(\begin{matrix}2\\-2\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-1&2\\\frac{1}{2}&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}2\\-2\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-2+2\left(-2\right)\\\frac{1}{2}\times 2-\frac{1}{2}\left(-2\right)\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-6\\2\end{matrix}\right)
ھېسابلاڭ.
y=-6,x=2
ماترىتسا ئېلېمېنتلىرى y ۋە x نى يېيىڭ.
y+4x=2
بىرىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. 4x نى ھەر ئىككى تەرەپكە قوشۇڭ.
y+2x=-2
ئىككىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. 2x نى ھەر ئىككى تەرەپكە قوشۇڭ.
y+4x=2,y+2x=-2
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
y-y+4x-2x=2+2
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق y+4x=2 دىن y+2x=-2 نى ئېلىڭ.
4x-2x=2+2
y نى -y گە قوشۇڭ. y بىلەن -y يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
2x=2+2
4x نى -2x گە قوشۇڭ.
2x=4
2 نى 2 گە قوشۇڭ.
x=2
ھەر ئىككى تەرەپنى 2 گە بۆلۈڭ.
y+2\times 2=-2
y+2x=-2 دە 2 نى x گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، y نى بىۋاسىتە يېشەلەيسىز.
y+4=-2
2 نى 2 كە كۆپەيتىڭ.
y=-6
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 4 نى ئېلىڭ.
y=-6,x=2
سىستېما ھەل قىلىندى.