ئاساسىي مەزمۇنغا ئاتلاش
y، x نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

y-\frac{1}{3}x=4
بىرىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. ھەر ئىككى تەرەپتىن \frac{1}{3}x نى ئېلىڭ.
y-x=10
ئىككىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. ھەر ئىككى تەرەپتىن x نى ئېلىڭ.
y-\frac{1}{3}x=4,y-x=10
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
y-\frac{1}{3}x=4
تەڭلىمىدىن بىرنى تالاپ، y نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق y نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
y=\frac{1}{3}x+4
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{x}{3} نى قوشۇڭ.
\frac{1}{3}x+4-x=10
يەنە بىر تەڭلىمە y-x=10 دىكى y نىڭ ئورنىغا \frac{x}{3}+4 نى ئالماشتۇرۇڭ.
-\frac{2}{3}x+4=10
\frac{x}{3} نى -x گە قوشۇڭ.
-\frac{2}{3}x=6
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 4 نى ئېلىڭ.
x=-9
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى -\frac{2}{3} گە، يەنى كەسىرنىڭ ئەكس سانى ئارقىلىق ھەر ئىككى تەرەپنى كۆپەيتىدىغان سانغا بۆلۈڭ.
y=\frac{1}{3}\left(-9\right)+4
y=\frac{1}{3}x+4 دە -9 نى x گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، y نى بىۋاسىتە يېشەلەيسىز.
y=-3+4
\frac{1}{3} نى -9 كە كۆپەيتىڭ.
y=1
4 نى -3 گە قوشۇڭ.
y=1,x=-9
سىستېما ھەل قىلىندى.
y-\frac{1}{3}x=4
بىرىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. ھەر ئىككى تەرەپتىن \frac{1}{3}x نى ئېلىڭ.
y-x=10
ئىككىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. ھەر ئىككى تەرەپتىن x نى ئېلىڭ.
y-\frac{1}{3}x=4,y-x=10
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}1&-\frac{1}{3}\\1&-1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}4\\10\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}1&-\frac{1}{3}\\1&-1\end{matrix}\right))\left(\begin{matrix}1&-\frac{1}{3}\\1&-1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-\frac{1}{3}\\1&-1\end{matrix}\right))\left(\begin{matrix}4\\10\end{matrix}\right)
\left(\begin{matrix}1&-\frac{1}{3}\\1&-1\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-\frac{1}{3}\\1&-1\end{matrix}\right))\left(\begin{matrix}4\\10\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-\frac{1}{3}\\1&-1\end{matrix}\right))\left(\begin{matrix}4\\10\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-\left(-\frac{1}{3}\right)}&-\frac{-\frac{1}{3}}{-1-\left(-\frac{1}{3}\right)}\\-\frac{1}{-1-\left(-\frac{1}{3}\right)}&\frac{1}{-1-\left(-\frac{1}{3}\right)}\end{matrix}\right)\left(\begin{matrix}4\\10\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2}&-\frac{1}{2}\\\frac{3}{2}&-\frac{3}{2}\end{matrix}\right)\left(\begin{matrix}4\\10\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2}\times 4-\frac{1}{2}\times 10\\\frac{3}{2}\times 4-\frac{3}{2}\times 10\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}1\\-9\end{matrix}\right)
ھېسابلاڭ.
y=1,x=-9
ماترىتسا ئېلېمېنتلىرى y ۋە x نى يېيىڭ.
y-\frac{1}{3}x=4
بىرىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. ھەر ئىككى تەرەپتىن \frac{1}{3}x نى ئېلىڭ.
y-x=10
ئىككىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. ھەر ئىككى تەرەپتىن x نى ئېلىڭ.
y-\frac{1}{3}x=4,y-x=10
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
y-y-\frac{1}{3}x+x=4-10
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق y-\frac{1}{3}x=4 دىن y-x=10 نى ئېلىڭ.
-\frac{1}{3}x+x=4-10
y نى -y گە قوشۇڭ. y بىلەن -y يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
\frac{2}{3}x=4-10
-\frac{x}{3} نى x گە قوشۇڭ.
\frac{2}{3}x=-6
4 نى -10 گە قوشۇڭ.
x=-9
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى \frac{2}{3} گە، يەنى كەسىرنىڭ ئەكس سانى ئارقىلىق ھەر ئىككى تەرەپنى كۆپەيتىدىغان سانغا بۆلۈڭ.
y-\left(-9\right)=10
y-x=10 دە -9 نى x گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، y نى بىۋاسىتە يېشەلەيسىز.
y+9=10
-1 نى -9 كە كۆپەيتىڭ.
y=1
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 9 نى ئېلىڭ.
y=1,x=-9
سىستېما ھەل قىلىندى.