x، y نى يېشىش
x=14
y=46
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
5x-30=y-6
بىرىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى 5 گە كۆپەيتىڭ.
5x-30-y=-6
ھەر ئىككى تەرەپتىن y نى ئېلىڭ.
5x-y=-6+30
30 نى ھەر ئىككى تەرەپكە قوشۇڭ.
5x-y=24
-6 گە 30 نى قوشۇپ 24 نى چىقىرىڭ.
2x+18=y
ئىككىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى 2 گە كۆپەيتىڭ.
2x+18-y=0
ھەر ئىككى تەرەپتىن y نى ئېلىڭ.
2x-y=-18
ھەر ئىككى تەرەپتىن 18 نى ئېلىڭ. نۆلدىن ھەرقانداق سان ئېلىنسا، شۇ ساننىڭ مەنپىيسى چىقىدۇ.
5x-y=24,2x-y=-18
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
5x-y=24
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
5x=y+24
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە y نى قوشۇڭ.
x=\frac{1}{5}\left(y+24\right)
ھەر ئىككى تەرەپنى 5 گە بۆلۈڭ.
x=\frac{1}{5}y+\frac{24}{5}
\frac{1}{5} نى y+24 كە كۆپەيتىڭ.
2\left(\frac{1}{5}y+\frac{24}{5}\right)-y=-18
يەنە بىر تەڭلىمە 2x-y=-18 دىكى x نىڭ ئورنىغا \frac{24+y}{5} نى ئالماشتۇرۇڭ.
\frac{2}{5}y+\frac{48}{5}-y=-18
2 نى \frac{24+y}{5} كە كۆپەيتىڭ.
-\frac{3}{5}y+\frac{48}{5}=-18
\frac{2y}{5} نى -y گە قوشۇڭ.
-\frac{3}{5}y=-\frac{138}{5}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{48}{5} نى ئېلىڭ.
y=46
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى -\frac{3}{5} گە، يەنى كەسىرنىڭ ئەكس سانى ئارقىلىق ھەر ئىككى تەرەپنى كۆپەيتىدىغان سانغا بۆلۈڭ.
x=\frac{1}{5}\times 46+\frac{24}{5}
x=\frac{1}{5}y+\frac{24}{5} دە 46 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=\frac{46+24}{5}
\frac{1}{5} نى 46 كە كۆپەيتىڭ.
x=14
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق \frac{24}{5} نى \frac{46}{5} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
x=14,y=46
سىستېما ھەل قىلىندى.
5x-30=y-6
بىرىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى 5 گە كۆپەيتىڭ.
5x-30-y=-6
ھەر ئىككى تەرەپتىن y نى ئېلىڭ.
5x-y=-6+30
30 نى ھەر ئىككى تەرەپكە قوشۇڭ.
5x-y=24
-6 گە 30 نى قوشۇپ 24 نى چىقىرىڭ.
2x+18=y
ئىككىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى 2 گە كۆپەيتىڭ.
2x+18-y=0
ھەر ئىككى تەرەپتىن y نى ئېلىڭ.
2x-y=-18
ھەر ئىككى تەرەپتىن 18 نى ئېلىڭ. نۆلدىن ھەرقانداق سان ئېلىنسا، شۇ ساننىڭ مەنپىيسى چىقىدۇ.
5x-y=24,2x-y=-18
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}5&-1\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}24\\-18\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}5&-1\\2&-1\end{matrix}\right))\left(\begin{matrix}5&-1\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\2&-1\end{matrix}\right))\left(\begin{matrix}24\\-18\end{matrix}\right)
\left(\begin{matrix}5&-1\\2&-1\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\2&-1\end{matrix}\right))\left(\begin{matrix}24\\-18\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\2&-1\end{matrix}\right))\left(\begin{matrix}24\\-18\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5\left(-1\right)-\left(-2\right)}&-\frac{-1}{5\left(-1\right)-\left(-2\right)}\\-\frac{2}{5\left(-1\right)-\left(-2\right)}&\frac{5}{5\left(-1\right)-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}24\\-18\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&-\frac{1}{3}\\\frac{2}{3}&-\frac{5}{3}\end{matrix}\right)\left(\begin{matrix}24\\-18\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\times 24-\frac{1}{3}\left(-18\right)\\\frac{2}{3}\times 24-\frac{5}{3}\left(-18\right)\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}14\\46\end{matrix}\right)
ھېسابلاڭ.
x=14,y=46
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
5x-30=y-6
بىرىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى 5 گە كۆپەيتىڭ.
5x-30-y=-6
ھەر ئىككى تەرەپتىن y نى ئېلىڭ.
5x-y=-6+30
30 نى ھەر ئىككى تەرەپكە قوشۇڭ.
5x-y=24
-6 گە 30 نى قوشۇپ 24 نى چىقىرىڭ.
2x+18=y
ئىككىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى 2 گە كۆپەيتىڭ.
2x+18-y=0
ھەر ئىككى تەرەپتىن y نى ئېلىڭ.
2x-y=-18
ھەر ئىككى تەرەپتىن 18 نى ئېلىڭ. نۆلدىن ھەرقانداق سان ئېلىنسا، شۇ ساننىڭ مەنپىيسى چىقىدۇ.
5x-y=24,2x-y=-18
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
5x-2x-y+y=24+18
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق 5x-y=24 دىن 2x-y=-18 نى ئېلىڭ.
5x-2x=24+18
-y نى y گە قوشۇڭ. -y بىلەن y يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
3x=24+18
5x نى -2x گە قوشۇڭ.
3x=42
24 نى 18 گە قوشۇڭ.
x=14
ھەر ئىككى تەرەپنى 3 گە بۆلۈڭ.
2\times 14-y=-18
2x-y=-18 دە 14 نى x گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، y نى بىۋاسىتە يېشەلەيسىز.
28-y=-18
2 نى 14 كە كۆپەيتىڭ.
-y=-46
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 28 نى ئېلىڭ.
y=46
ھەر ئىككى تەرەپنى -1 گە بۆلۈڭ.
x=14,y=46
سىستېما ھەل قىلىندى.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}