ئاساسىي مەزمۇنغا ئاتلاش
x، y نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

x+y=2
ئىككىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. y نى ھەر ئىككى تەرەپكە قوشۇڭ.
x-3y=5,x+y=2
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
x-3y=5
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
x=3y+5
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 3y نى قوشۇڭ.
3y+5+y=2
يەنە بىر تەڭلىمە x+y=2 دىكى x نىڭ ئورنىغا 3y+5 نى ئالماشتۇرۇڭ.
4y+5=2
3y نى y گە قوشۇڭ.
4y=-3
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 5 نى ئېلىڭ.
y=-\frac{3}{4}
ھەر ئىككى تەرەپنى 4 گە بۆلۈڭ.
x=3\left(-\frac{3}{4}\right)+5
x=3y+5 دە -\frac{3}{4} نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=-\frac{9}{4}+5
3 نى -\frac{3}{4} كە كۆپەيتىڭ.
x=\frac{11}{4}
5 نى -\frac{9}{4} گە قوشۇڭ.
x=\frac{11}{4},y=-\frac{3}{4}
سىستېما ھەل قىلىندى.
x+y=2
ئىككىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. y نى ھەر ئىككى تەرەپكە قوشۇڭ.
x-3y=5,x+y=2
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}1&-3\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\2\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}1&-3\\1&1\end{matrix}\right))\left(\begin{matrix}1&-3\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\1&1\end{matrix}\right))\left(\begin{matrix}5\\2\end{matrix}\right)
\left(\begin{matrix}1&-3\\1&1\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\1&1\end{matrix}\right))\left(\begin{matrix}5\\2\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\1&1\end{matrix}\right))\left(\begin{matrix}5\\2\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-3\right)}&-\frac{-3}{1-\left(-3\right)}\\-\frac{1}{1-\left(-3\right)}&\frac{1}{1-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}5\\2\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&\frac{3}{4}\\-\frac{1}{4}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}5\\2\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\times 5+\frac{3}{4}\times 2\\-\frac{1}{4}\times 5+\frac{1}{4}\times 2\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{11}{4}\\-\frac{3}{4}\end{matrix}\right)
ھېسابلاڭ.
x=\frac{11}{4},y=-\frac{3}{4}
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
x+y=2
ئىككىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. y نى ھەر ئىككى تەرەپكە قوشۇڭ.
x-3y=5,x+y=2
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
x-x-3y-y=5-2
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق x-3y=5 دىن x+y=2 نى ئېلىڭ.
-3y-y=5-2
x نى -x گە قوشۇڭ. x بىلەن -x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
-4y=5-2
-3y نى -y گە قوشۇڭ.
-4y=3
5 نى -2 گە قوشۇڭ.
y=-\frac{3}{4}
ھەر ئىككى تەرەپنى -4 گە بۆلۈڭ.
x-\frac{3}{4}=2
x+y=2 دە -\frac{3}{4} نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=\frac{11}{4}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{3}{4} نى قوشۇڭ.
x=\frac{11}{4},y=-\frac{3}{4}
سىستېما ھەل قىلىندى.