ئاساسىي مەزمۇنغا ئاتلاش
x، y نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

x+y=200,x+\frac{1}{2}y=160
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
x+y=200
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
x=-y+200
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن y نى ئېلىڭ.
-y+200+\frac{1}{2}y=160
يەنە بىر تەڭلىمە x+\frac{1}{2}y=160 دىكى x نىڭ ئورنىغا -y+200 نى ئالماشتۇرۇڭ.
-\frac{1}{2}y+200=160
-y نى \frac{y}{2} گە قوشۇڭ.
-\frac{1}{2}y=-40
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 200 نى ئېلىڭ.
y=80
ھەر ئىككى تەرەپنى -2 گە كۆپەيتىڭ.
x=-80+200
x=-y+200 دە 80 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=120
200 نى -80 گە قوشۇڭ.
x=120,y=80
سىستېما ھەل قىلىندى.
x+y=200,x+\frac{1}{2}y=160
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}1&1\\1&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}200\\160\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}1&1\\1&\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}1&1\\1&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}200\\160\end{matrix}\right)
\left(\begin{matrix}1&1\\1&\frac{1}{2}\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}200\\160\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}200\\160\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{\frac{1}{2}}{\frac{1}{2}-1}&-\frac{1}{\frac{1}{2}-1}\\-\frac{1}{\frac{1}{2}-1}&\frac{1}{\frac{1}{2}-1}\end{matrix}\right)\left(\begin{matrix}200\\160\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&2\\2&-2\end{matrix}\right)\left(\begin{matrix}200\\160\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-200+2\times 160\\2\times 200-2\times 160\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}120\\80\end{matrix}\right)
ھېسابلاڭ.
x=120,y=80
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
x+y=200,x+\frac{1}{2}y=160
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
x-x+y-\frac{1}{2}y=200-160
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق x+y=200 دىن x+\frac{1}{2}y=160 نى ئېلىڭ.
y-\frac{1}{2}y=200-160
x نى -x گە قوشۇڭ. x بىلەن -x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
\frac{1}{2}y=200-160
y نى -\frac{y}{2} گە قوشۇڭ.
\frac{1}{2}y=40
200 نى -160 گە قوشۇڭ.
y=80
ھەر ئىككى تەرەپنى 2 گە كۆپەيتىڭ.
x+\frac{1}{2}\times 80=160
x+\frac{1}{2}y=160 دە 80 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x+40=160
\frac{1}{2} نى 80 كە كۆپەيتىڭ.
x=120
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 40 نى ئېلىڭ.
x=120,y=80
سىستېما ھەل قىلىندى.