x، y نى يېشىش
x=637
y=-537
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
x+y=100,60x+70y=630
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
x+y=100
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
x=-y+100
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن y نى ئېلىڭ.
60\left(-y+100\right)+70y=630
يەنە بىر تەڭلىمە 60x+70y=630 دىكى x نىڭ ئورنىغا -y+100 نى ئالماشتۇرۇڭ.
-60y+6000+70y=630
60 نى -y+100 كە كۆپەيتىڭ.
10y+6000=630
-60y نى 70y گە قوشۇڭ.
10y=-5370
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 6000 نى ئېلىڭ.
y=-537
ھەر ئىككى تەرەپنى 10 گە بۆلۈڭ.
x=-\left(-537\right)+100
x=-y+100 دە -537 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=537+100
-1 نى -537 كە كۆپەيتىڭ.
x=637
100 نى 537 گە قوشۇڭ.
x=637,y=-537
سىستېما ھەل قىلىندى.
x+y=100,60x+70y=630
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}1&1\\60&70\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}100\\630\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}1&1\\60&70\end{matrix}\right))\left(\begin{matrix}1&1\\60&70\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\60&70\end{matrix}\right))\left(\begin{matrix}100\\630\end{matrix}\right)
\left(\begin{matrix}1&1\\60&70\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\60&70\end{matrix}\right))\left(\begin{matrix}100\\630\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\60&70\end{matrix}\right))\left(\begin{matrix}100\\630\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{70}{70-60}&-\frac{1}{70-60}\\-\frac{60}{70-60}&\frac{1}{70-60}\end{matrix}\right)\left(\begin{matrix}100\\630\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7&-\frac{1}{10}\\-6&\frac{1}{10}\end{matrix}\right)\left(\begin{matrix}100\\630\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\times 100-\frac{1}{10}\times 630\\-6\times 100+\frac{1}{10}\times 630\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}637\\-537\end{matrix}\right)
ھېسابلاڭ.
x=637,y=-537
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
x+y=100,60x+70y=630
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
60x+60y=60\times 100,60x+70y=630
x بىلەن 60x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى 60 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى 1 گە كۆپەيتىڭ.
60x+60y=6000,60x+70y=630
ئاددىيلاشتۇرۇڭ.
60x-60x+60y-70y=6000-630
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق 60x+60y=6000 دىن 60x+70y=630 نى ئېلىڭ.
60y-70y=6000-630
60x نى -60x گە قوشۇڭ. 60x بىلەن -60x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
-10y=6000-630
60y نى -70y گە قوشۇڭ.
-10y=5370
6000 نى -630 گە قوشۇڭ.
y=-537
ھەر ئىككى تەرەپنى -10 گە بۆلۈڭ.
60x+70\left(-537\right)=630
60x+70y=630 دە -537 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
60x-37590=630
70 نى -537 كە كۆپەيتىڭ.
60x=38220
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 37590 نى قوشۇڭ.
x=637
ھەر ئىككى تەرەپنى 60 گە بۆلۈڭ.
x=637,y=-537
سىستېما ھەل قىلىندى.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}