x، y، z نى يېشىش
x = \frac{46}{25} = 1\frac{21}{25} = 1.84
y = \frac{47}{25} = 1\frac{22}{25} = 1.88
z=-\frac{18}{25}=-0.72
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
x=-y-z+3
x+y+z=3 دىكى x نى تېپىڭ.
3\left(-y-z+3\right)+2y-z=10 2\left(-y-z+3\right)-5y-z=-5
ئىككىنچى ۋە ئۈچىنچى تەڭلىمىدىكى -y-z+3 نى x گە ئالماشتۇرۇڭ.
y=-4z-1 z=-\frac{7}{3}y+\frac{11}{3}
بۇ تەڭلىمىدىكى y ۋە z نى ئايرىم-ئايرىم يېشىڭ.
z=-\frac{7}{3}\left(-4z-1\right)+\frac{11}{3}
تەڭلىمە z=-\frac{7}{3}y+\frac{11}{3} دىكى -4z-1 نى y گە ئالماشتۇرۇڭ.
z=-\frac{18}{25}
z=-\frac{7}{3}\left(-4z-1\right)+\frac{11}{3} دىكى z نى تېپىڭ.
y=-4\left(-\frac{18}{25}\right)-1
تەڭلىمە y=-4z-1 دىكى -\frac{18}{25} نى z گە ئالماشتۇرۇڭ.
y=\frac{47}{25}
y=-4\left(-\frac{18}{25}\right)-1 دىكى y نى ھېسابلاڭ.
x=-\frac{47}{25}-\left(-\frac{18}{25}\right)+3
تەڭلىمە x=-y-z+3 دىكى \frac{47}{25} نى y گە ۋە -\frac{18}{25} نى z گە ئالماشتۇرۇڭ.
x=\frac{46}{25}
x=-\frac{47}{25}-\left(-\frac{18}{25}\right)+3 دىكى x نى ھېسابلاڭ.
x=\frac{46}{25} y=\frac{47}{25} z=-\frac{18}{25}
سىستېما ھەل قىلىندى.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}