ئاساسىي مەزمۇنغا ئاتلاش
x، y نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

x+7-y=0
بىرىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. ھەر ئىككى تەرەپتىن y نى ئېلىڭ.
x-y=-7
ھەر ئىككى تەرەپتىن 7 نى ئېلىڭ. نۆلدىن ھەرقانداق سان ئېلىنسا، شۇ ساننىڭ مەنپىيسى چىقىدۇ.
x-y=-7,3x+4y=0
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
x-y=-7
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
x=y-7
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە y نى قوشۇڭ.
3\left(y-7\right)+4y=0
يەنە بىر تەڭلىمە 3x+4y=0 دىكى x نىڭ ئورنىغا y-7 نى ئالماشتۇرۇڭ.
3y-21+4y=0
3 نى y-7 كە كۆپەيتىڭ.
7y-21=0
3y نى 4y گە قوشۇڭ.
7y=21
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 21 نى قوشۇڭ.
y=3
ھەر ئىككى تەرەپنى 7 گە بۆلۈڭ.
x=3-7
x=y-7 دە 3 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=-4
-7 نى 3 گە قوشۇڭ.
x=-4,y=3
سىستېما ھەل قىلىندى.
x+7-y=0
بىرىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. ھەر ئىككى تەرەپتىن y نى ئېلىڭ.
x-y=-7
ھەر ئىككى تەرەپتىن 7 نى ئېلىڭ. نۆلدىن ھەرقانداق سان ئېلىنسا، شۇ ساننىڭ مەنپىيسى چىقىدۇ.
x-y=-7,3x+4y=0
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}1&-1\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-7\\0\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}1&-1\\3&4\end{matrix}\right))\left(\begin{matrix}1&-1\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\3&4\end{matrix}\right))\left(\begin{matrix}-7\\0\end{matrix}\right)
\left(\begin{matrix}1&-1\\3&4\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\3&4\end{matrix}\right))\left(\begin{matrix}-7\\0\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\3&4\end{matrix}\right))\left(\begin{matrix}-7\\0\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{4-\left(-3\right)}&-\frac{-1}{4-\left(-3\right)}\\-\frac{3}{4-\left(-3\right)}&\frac{1}{4-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}-7\\0\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{7}&\frac{1}{7}\\-\frac{3}{7}&\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}-7\\0\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{7}\left(-7\right)\\-\frac{3}{7}\left(-7\right)\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\\3\end{matrix}\right)
ھېسابلاڭ.
x=-4,y=3
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
x+7-y=0
بىرىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. ھەر ئىككى تەرەپتىن y نى ئېلىڭ.
x-y=-7
ھەر ئىككى تەرەپتىن 7 نى ئېلىڭ. نۆلدىن ھەرقانداق سان ئېلىنسا، شۇ ساننىڭ مەنپىيسى چىقىدۇ.
x-y=-7,3x+4y=0
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
3x+3\left(-1\right)y=3\left(-7\right),3x+4y=0
x بىلەن 3x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى 3 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى 1 گە كۆپەيتىڭ.
3x-3y=-21,3x+4y=0
ئاددىيلاشتۇرۇڭ.
3x-3x-3y-4y=-21
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق 3x-3y=-21 دىن 3x+4y=0 نى ئېلىڭ.
-3y-4y=-21
3x نى -3x گە قوشۇڭ. 3x بىلەن -3x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
-7y=-21
-3y نى -4y گە قوشۇڭ.
y=3
ھەر ئىككى تەرەپنى -7 گە بۆلۈڭ.
3x+4\times 3=0
3x+4y=0 دە 3 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
3x+12=0
4 نى 3 كە كۆپەيتىڭ.
3x=-12
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 12 نى ئېلىڭ.
x=-4
ھەر ئىككى تەرەپنى 3 گە بۆلۈڭ.
x=-4,y=3
سىستېما ھەل قىلىندى.