x، y نى يېشىش
x=0
y = \frac{3}{2} = 1\frac{1}{2} = 1.5
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
x+2y=3,2x+2y=3
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
x+2y=3
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
x=-2y+3
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 2y نى ئېلىڭ.
2\left(-2y+3\right)+2y=3
يەنە بىر تەڭلىمە 2x+2y=3 دىكى x نىڭ ئورنىغا -2y+3 نى ئالماشتۇرۇڭ.
-4y+6+2y=3
2 نى -2y+3 كە كۆپەيتىڭ.
-2y+6=3
-4y نى 2y گە قوشۇڭ.
-2y=-3
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 6 نى ئېلىڭ.
y=\frac{3}{2}
ھەر ئىككى تەرەپنى -2 گە بۆلۈڭ.
x=-2\times \frac{3}{2}+3
x=-2y+3 دە \frac{3}{2} نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=-3+3
-2 نى \frac{3}{2} كە كۆپەيتىڭ.
x=0
3 نى -3 گە قوشۇڭ.
x=0,y=\frac{3}{2}
سىستېما ھەل قىلىندى.
x+2y=3,2x+2y=3
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}1&2\\2&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\3\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}1&2\\2&2\end{matrix}\right))\left(\begin{matrix}1&2\\2&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\2&2\end{matrix}\right))\left(\begin{matrix}3\\3\end{matrix}\right)
\left(\begin{matrix}1&2\\2&2\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\2&2\end{matrix}\right))\left(\begin{matrix}3\\3\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\2&2\end{matrix}\right))\left(\begin{matrix}3\\3\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2-2\times 2}&-\frac{2}{2-2\times 2}\\-\frac{2}{2-2\times 2}&\frac{1}{2-2\times 2}\end{matrix}\right)\left(\begin{matrix}3\\3\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&1\\1&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}3\\3\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3+3\\3-\frac{1}{2}\times 3\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\\frac{3}{2}\end{matrix}\right)
ھېسابلاڭ.
x=0,y=\frac{3}{2}
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
x+2y=3,2x+2y=3
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
x-2x+2y-2y=3-3
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق x+2y=3 دىن 2x+2y=3 نى ئېلىڭ.
x-2x=3-3
2y نى -2y گە قوشۇڭ. 2y بىلەن -2y يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
-x=3-3
x نى -2x گە قوشۇڭ.
-x=0
3 نى -3 گە قوشۇڭ.
x=0
ھەر ئىككى تەرەپنى -1 گە بۆلۈڭ.
2y=3
2x+2y=3 دە 0 نى x گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، y نى بىۋاسىتە يېشەلەيسىز.
y=\frac{3}{2}
ھەر ئىككى تەرەپنى 2 گە بۆلۈڭ.
x=0,y=\frac{3}{2}
سىستېما ھەل قىلىندى.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}