m، n نى يېشىش
m=\frac{4}{5}=0.8
n=\frac{1}{5}=0.2
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
m+n=1,-3m+2n=-2
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
m+n=1
تەڭلىمىدىن بىرنى تالاپ، m نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق m نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
m=-n+1
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن n نى ئېلىڭ.
-3\left(-n+1\right)+2n=-2
يەنە بىر تەڭلىمە -3m+2n=-2 دىكى m نىڭ ئورنىغا -n+1 نى ئالماشتۇرۇڭ.
3n-3+2n=-2
-3 نى -n+1 كە كۆپەيتىڭ.
5n-3=-2
3n نى 2n گە قوشۇڭ.
5n=1
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 3 نى قوشۇڭ.
n=\frac{1}{5}
ھەر ئىككى تەرەپنى 5 گە بۆلۈڭ.
m=-\frac{1}{5}+1
m=-n+1 دە \frac{1}{5} نى n گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، m نى بىۋاسىتە يېشەلەيسىز.
m=\frac{4}{5}
1 نى -\frac{1}{5} گە قوشۇڭ.
m=\frac{4}{5},n=\frac{1}{5}
سىستېما ھەل قىلىندى.
m+n=1,-3m+2n=-2
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}1&1\\-3&2\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}1\\-2\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}1&1\\-3&2\end{matrix}\right))\left(\begin{matrix}1&1\\-3&2\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-3&2\end{matrix}\right))\left(\begin{matrix}1\\-2\end{matrix}\right)
\left(\begin{matrix}1&1\\-3&2\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-3&2\end{matrix}\right))\left(\begin{matrix}1\\-2\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-3&2\end{matrix}\right))\left(\begin{matrix}1\\-2\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2-\left(-3\right)}&-\frac{1}{2-\left(-3\right)}\\-\frac{-3}{2-\left(-3\right)}&\frac{1}{2-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}1\\-2\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}&-\frac{1}{5}\\\frac{3}{5}&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}1\\-2\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}-\frac{1}{5}\left(-2\right)\\\frac{3}{5}+\frac{1}{5}\left(-2\right)\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{4}{5}\\\frac{1}{5}\end{matrix}\right)
ھېسابلاڭ.
m=\frac{4}{5},n=\frac{1}{5}
ماترىتسا ئېلېمېنتلىرى m ۋە n نى يېيىڭ.
m+n=1,-3m+2n=-2
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
-3m-3n=-3,-3m+2n=-2
m بىلەن -3m نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى -3 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى 1 گە كۆپەيتىڭ.
-3m+3m-3n-2n=-3+2
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق -3m-3n=-3 دىن -3m+2n=-2 نى ئېلىڭ.
-3n-2n=-3+2
-3m نى 3m گە قوشۇڭ. -3m بىلەن 3m يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
-5n=-3+2
-3n نى -2n گە قوشۇڭ.
-5n=-1
-3 نى 2 گە قوشۇڭ.
n=\frac{1}{5}
ھەر ئىككى تەرەپنى -5 گە بۆلۈڭ.
-3m+2\times \frac{1}{5}=-2
-3m+2n=-2 دە \frac{1}{5} نى n گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، m نى بىۋاسىتە يېشەلەيسىز.
-3m+\frac{2}{5}=-2
2 نى \frac{1}{5} كە كۆپەيتىڭ.
-3m=-\frac{12}{5}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{2}{5} نى ئېلىڭ.
m=\frac{4}{5}
ھەر ئىككى تەرەپنى -3 گە بۆلۈڭ.
m=\frac{4}{5},n=\frac{1}{5}
سىستېما ھەل قىلىندى.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}