ئاساسىي مەزمۇنغا ئاتلاش
x، y نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

9x+7y=6,8x+3y=9
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
9x+7y=6
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
9x=-7y+6
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 7y نى ئېلىڭ.
x=\frac{1}{9}\left(-7y+6\right)
ھەر ئىككى تەرەپنى 9 گە بۆلۈڭ.
x=-\frac{7}{9}y+\frac{2}{3}
\frac{1}{9} نى -7y+6 كە كۆپەيتىڭ.
8\left(-\frac{7}{9}y+\frac{2}{3}\right)+3y=9
يەنە بىر تەڭلىمە 8x+3y=9 دىكى x نىڭ ئورنىغا -\frac{7y}{9}+\frac{2}{3} نى ئالماشتۇرۇڭ.
-\frac{56}{9}y+\frac{16}{3}+3y=9
8 نى -\frac{7y}{9}+\frac{2}{3} كە كۆپەيتىڭ.
-\frac{29}{9}y+\frac{16}{3}=9
-\frac{56y}{9} نى 3y گە قوشۇڭ.
-\frac{29}{9}y=\frac{11}{3}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{16}{3} نى ئېلىڭ.
y=-\frac{33}{29}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى -\frac{29}{9} گە، يەنى كەسىرنىڭ ئەكس سانى ئارقىلىق ھەر ئىككى تەرەپنى كۆپەيتىدىغان سانغا بۆلۈڭ.
x=-\frac{7}{9}\left(-\frac{33}{29}\right)+\frac{2}{3}
x=-\frac{7}{9}y+\frac{2}{3} دە -\frac{33}{29} نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=\frac{77}{87}+\frac{2}{3}
سۈرەتنى سۈرەتكە، مەخرەجنى مەخرەجگە كۆپەيتىش ئارقىلىق -\frac{7}{9} نى -\frac{33}{29} گە كۆپەيتىڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە ئاددىيلاشتۇرۇڭ.
x=\frac{45}{29}
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق \frac{2}{3} نى \frac{77}{87} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
x=\frac{45}{29},y=-\frac{33}{29}
سىستېما ھەل قىلىندى.
9x+7y=6,8x+3y=9
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}9&7\\8&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\9\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}9&7\\8&3\end{matrix}\right))\left(\begin{matrix}9&7\\8&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}9&7\\8&3\end{matrix}\right))\left(\begin{matrix}6\\9\end{matrix}\right)
\left(\begin{matrix}9&7\\8&3\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}9&7\\8&3\end{matrix}\right))\left(\begin{matrix}6\\9\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}9&7\\8&3\end{matrix}\right))\left(\begin{matrix}6\\9\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{9\times 3-7\times 8}&-\frac{7}{9\times 3-7\times 8}\\-\frac{8}{9\times 3-7\times 8}&\frac{9}{9\times 3-7\times 8}\end{matrix}\right)\left(\begin{matrix}6\\9\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{29}&\frac{7}{29}\\\frac{8}{29}&-\frac{9}{29}\end{matrix}\right)\left(\begin{matrix}6\\9\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{29}\times 6+\frac{7}{29}\times 9\\\frac{8}{29}\times 6-\frac{9}{29}\times 9\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{45}{29}\\-\frac{33}{29}\end{matrix}\right)
ھېسابلاڭ.
x=\frac{45}{29},y=-\frac{33}{29}
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
9x+7y=6,8x+3y=9
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
8\times 9x+8\times 7y=8\times 6,9\times 8x+9\times 3y=9\times 9
9x بىلەن 8x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى 8 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى 9 گە كۆپەيتىڭ.
72x+56y=48,72x+27y=81
ئاددىيلاشتۇرۇڭ.
72x-72x+56y-27y=48-81
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق 72x+56y=48 دىن 72x+27y=81 نى ئېلىڭ.
56y-27y=48-81
72x نى -72x گە قوشۇڭ. 72x بىلەن -72x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
29y=48-81
56y نى -27y گە قوشۇڭ.
29y=-33
48 نى -81 گە قوشۇڭ.
y=-\frac{33}{29}
ھەر ئىككى تەرەپنى 29 گە بۆلۈڭ.
8x+3\left(-\frac{33}{29}\right)=9
8x+3y=9 دە -\frac{33}{29} نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
8x-\frac{99}{29}=9
3 نى -\frac{33}{29} كە كۆپەيتىڭ.
8x=\frac{360}{29}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{99}{29} نى قوشۇڭ.
x=\frac{45}{29}
ھەر ئىككى تەرەپنى 8 گە بۆلۈڭ.
x=\frac{45}{29},y=-\frac{33}{29}
سىستېما ھەل قىلىندى.