x، y نى يېشىش
x=-0.05
y=0.05
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
80x+160y=4,x+3y=0.1
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
80x+160y=4
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
80x=-160y+4
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 160y نى ئېلىڭ.
x=\frac{1}{80}\left(-160y+4\right)
ھەر ئىككى تەرەپنى 80 گە بۆلۈڭ.
x=-2y+\frac{1}{20}
\frac{1}{80} نى -160y+4 كە كۆپەيتىڭ.
-2y+\frac{1}{20}+3y=0.1
يەنە بىر تەڭلىمە x+3y=0.1 دىكى x نىڭ ئورنىغا -2y+\frac{1}{20} نى ئالماشتۇرۇڭ.
y+\frac{1}{20}=0.1
-2y نى 3y گە قوشۇڭ.
y=\frac{1}{20}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{1}{20} نى ئېلىڭ.
x=-2\times \frac{1}{20}+\frac{1}{20}
x=-2y+\frac{1}{20} دە \frac{1}{20} نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=-\frac{1}{10}+\frac{1}{20}
-2 نى \frac{1}{20} كە كۆپەيتىڭ.
x=-\frac{1}{20}
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق \frac{1}{20} نى -\frac{1}{10} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
x=-\frac{1}{20},y=\frac{1}{20}
سىستېما ھەل قىلىندى.
80x+160y=4,x+3y=0.1
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}80&160\\1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\0.1\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}80&160\\1&3\end{matrix}\right))\left(\begin{matrix}80&160\\1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}80&160\\1&3\end{matrix}\right))\left(\begin{matrix}4\\0.1\end{matrix}\right)
\left(\begin{matrix}80&160\\1&3\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}80&160\\1&3\end{matrix}\right))\left(\begin{matrix}4\\0.1\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}80&160\\1&3\end{matrix}\right))\left(\begin{matrix}4\\0.1\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{80\times 3-160}&-\frac{160}{80\times 3-160}\\-\frac{1}{80\times 3-160}&\frac{80}{80\times 3-160}\end{matrix}\right)\left(\begin{matrix}4\\0.1\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{80}&-2\\-\frac{1}{80}&1\end{matrix}\right)\left(\begin{matrix}4\\0.1\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{80}\times 4-2\times 0.1\\-\frac{1}{80}\times 4+0.1\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{20}\\\frac{1}{20}\end{matrix}\right)
ھېسابلاڭ.
x=-\frac{1}{20},y=\frac{1}{20}
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
80x+160y=4,x+3y=0.1
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
80x+160y=4,80x+80\times 3y=80\times 0.1
80x بىلەن x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى 1 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى 80 گە كۆپەيتىڭ.
80x+160y=4,80x+240y=8
ئاددىيلاشتۇرۇڭ.
80x-80x+160y-240y=4-8
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق 80x+160y=4 دىن 80x+240y=8 نى ئېلىڭ.
160y-240y=4-8
80x نى -80x گە قوشۇڭ. 80x بىلەن -80x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
-80y=4-8
160y نى -240y گە قوشۇڭ.
-80y=-4
4 نى -8 گە قوشۇڭ.
y=\frac{1}{20}
ھەر ئىككى تەرەپنى -80 گە بۆلۈڭ.
x+3\times \frac{1}{20}=0.1
x+3y=0.1 دە \frac{1}{20} نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x+\frac{3}{20}=0.1
3 نى \frac{1}{20} كە كۆپەيتىڭ.
x=-\frac{1}{20}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{3}{20} نى ئېلىڭ.
x=-\frac{1}{20},y=\frac{1}{20}
سىستېما ھەل قىلىندى.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}