x، y نى يېشىش
x = -\frac{15}{2} = -7\frac{1}{2} = -7.5
y=-14
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
8x-5y=10,6x-4y=11
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
8x-5y=10
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
8x=5y+10
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 5y نى قوشۇڭ.
x=\frac{1}{8}\left(5y+10\right)
ھەر ئىككى تەرەپنى 8 گە بۆلۈڭ.
x=\frac{5}{8}y+\frac{5}{4}
\frac{1}{8} نى 10+5y كە كۆپەيتىڭ.
6\left(\frac{5}{8}y+\frac{5}{4}\right)-4y=11
يەنە بىر تەڭلىمە 6x-4y=11 دىكى x نىڭ ئورنىغا \frac{5}{4}+\frac{5y}{8} نى ئالماشتۇرۇڭ.
\frac{15}{4}y+\frac{15}{2}-4y=11
6 نى \frac{5}{4}+\frac{5y}{8} كە كۆپەيتىڭ.
-\frac{1}{4}y+\frac{15}{2}=11
\frac{15y}{4} نى -4y گە قوشۇڭ.
-\frac{1}{4}y=\frac{7}{2}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{15}{2} نى ئېلىڭ.
y=-14
ھەر ئىككى تەرەپنى -4 گە كۆپەيتىڭ.
x=\frac{5}{8}\left(-14\right)+\frac{5}{4}
x=\frac{5}{8}y+\frac{5}{4} دە -14 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=\frac{-35+5}{4}
\frac{5}{8} نى -14 كە كۆپەيتىڭ.
x=-\frac{15}{2}
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق \frac{5}{4} نى -\frac{35}{4} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
x=-\frac{15}{2},y=-14
سىستېما ھەل قىلىندى.
8x-5y=10,6x-4y=11
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}8&-5\\6&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\11\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}8&-5\\6&-4\end{matrix}\right))\left(\begin{matrix}8&-5\\6&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&-5\\6&-4\end{matrix}\right))\left(\begin{matrix}10\\11\end{matrix}\right)
\left(\begin{matrix}8&-5\\6&-4\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&-5\\6&-4\end{matrix}\right))\left(\begin{matrix}10\\11\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&-5\\6&-4\end{matrix}\right))\left(\begin{matrix}10\\11\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{8\left(-4\right)-\left(-5\times 6\right)}&-\frac{-5}{8\left(-4\right)-\left(-5\times 6\right)}\\-\frac{6}{8\left(-4\right)-\left(-5\times 6\right)}&\frac{8}{8\left(-4\right)-\left(-5\times 6\right)}\end{matrix}\right)\left(\begin{matrix}10\\11\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2&-\frac{5}{2}\\3&-4\end{matrix}\right)\left(\begin{matrix}10\\11\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\times 10-\frac{5}{2}\times 11\\3\times 10-4\times 11\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{15}{2}\\-14\end{matrix}\right)
ھېسابلاڭ.
x=-\frac{15}{2},y=-14
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
8x-5y=10,6x-4y=11
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
6\times 8x+6\left(-5\right)y=6\times 10,8\times 6x+8\left(-4\right)y=8\times 11
8x بىلەن 6x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى 6 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى 8 گە كۆپەيتىڭ.
48x-30y=60,48x-32y=88
ئاددىيلاشتۇرۇڭ.
48x-48x-30y+32y=60-88
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق 48x-30y=60 دىن 48x-32y=88 نى ئېلىڭ.
-30y+32y=60-88
48x نى -48x گە قوشۇڭ. 48x بىلەن -48x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
2y=60-88
-30y نى 32y گە قوشۇڭ.
2y=-28
60 نى -88 گە قوشۇڭ.
y=-14
ھەر ئىككى تەرەپنى 2 گە بۆلۈڭ.
6x-4\left(-14\right)=11
6x-4y=11 دە -14 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
6x+56=11
-4 نى -14 كە كۆپەيتىڭ.
6x=-45
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 56 نى ئېلىڭ.
x=-\frac{15}{2}
ھەر ئىككى تەرەپنى 6 گە بۆلۈڭ.
x=-\frac{15}{2},y=-14
سىستېما ھەل قىلىندى.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}