x، y نى يېشىش
x=5
y=9
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
6x-\frac{1}{3}y=27,\frac{4}{5}x+\frac{1}{4}y=\frac{25}{4}
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
6x-\frac{1}{3}y=27
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
6x=\frac{1}{3}y+27
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{y}{3} نى قوشۇڭ.
x=\frac{1}{6}\left(\frac{1}{3}y+27\right)
ھەر ئىككى تەرەپنى 6 گە بۆلۈڭ.
x=\frac{1}{18}y+\frac{9}{2}
\frac{1}{6} نى \frac{y}{3}+27 كە كۆپەيتىڭ.
\frac{4}{5}\left(\frac{1}{18}y+\frac{9}{2}\right)+\frac{1}{4}y=\frac{25}{4}
يەنە بىر تەڭلىمە \frac{4}{5}x+\frac{1}{4}y=\frac{25}{4} دىكى x نىڭ ئورنىغا \frac{y}{18}+\frac{9}{2} نى ئالماشتۇرۇڭ.
\frac{2}{45}y+\frac{18}{5}+\frac{1}{4}y=\frac{25}{4}
\frac{4}{5} نى \frac{y}{18}+\frac{9}{2} كە كۆپەيتىڭ.
\frac{53}{180}y+\frac{18}{5}=\frac{25}{4}
\frac{2y}{45} نى \frac{y}{4} گە قوشۇڭ.
\frac{53}{180}y=\frac{53}{20}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{18}{5} نى ئېلىڭ.
y=9
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى \frac{53}{180} گە، يەنى كەسىرنىڭ ئەكس سانى ئارقىلىق ھەر ئىككى تەرەپنى كۆپەيتىدىغان سانغا بۆلۈڭ.
x=\frac{1}{18}\times 9+\frac{9}{2}
x=\frac{1}{18}y+\frac{9}{2} دە 9 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=\frac{1+9}{2}
\frac{1}{18} نى 9 كە كۆپەيتىڭ.
x=5
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق \frac{9}{2} نى \frac{1}{2} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
x=5,y=9
سىستېما ھەل قىلىندى.
6x-\frac{1}{3}y=27,\frac{4}{5}x+\frac{1}{4}y=\frac{25}{4}
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}6&-\frac{1}{3}\\\frac{4}{5}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}27\\\frac{25}{4}\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}6&-\frac{1}{3}\\\frac{4}{5}&\frac{1}{4}\end{matrix}\right))\left(\begin{matrix}6&-\frac{1}{3}\\\frac{4}{5}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&-\frac{1}{3}\\\frac{4}{5}&\frac{1}{4}\end{matrix}\right))\left(\begin{matrix}27\\\frac{25}{4}\end{matrix}\right)
\left(\begin{matrix}6&-\frac{1}{3}\\\frac{4}{5}&\frac{1}{4}\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&-\frac{1}{3}\\\frac{4}{5}&\frac{1}{4}\end{matrix}\right))\left(\begin{matrix}27\\\frac{25}{4}\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&-\frac{1}{3}\\\frac{4}{5}&\frac{1}{4}\end{matrix}\right))\left(\begin{matrix}27\\\frac{25}{4}\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{\frac{1}{4}}{6\times \frac{1}{4}-\left(-\frac{1}{3}\times \frac{4}{5}\right)}&-\frac{-\frac{1}{3}}{6\times \frac{1}{4}-\left(-\frac{1}{3}\times \frac{4}{5}\right)}\\-\frac{\frac{4}{5}}{6\times \frac{1}{4}-\left(-\frac{1}{3}\times \frac{4}{5}\right)}&\frac{6}{6\times \frac{1}{4}-\left(-\frac{1}{3}\times \frac{4}{5}\right)}\end{matrix}\right)\left(\begin{matrix}27\\\frac{25}{4}\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{15}{106}&\frac{10}{53}\\-\frac{24}{53}&\frac{180}{53}\end{matrix}\right)\left(\begin{matrix}27\\\frac{25}{4}\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{15}{106}\times 27+\frac{10}{53}\times \frac{25}{4}\\-\frac{24}{53}\times 27+\frac{180}{53}\times \frac{25}{4}\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\9\end{matrix}\right)
ھېسابلاڭ.
x=5,y=9
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
6x-\frac{1}{3}y=27,\frac{4}{5}x+\frac{1}{4}y=\frac{25}{4}
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
\frac{4}{5}\times 6x+\frac{4}{5}\left(-\frac{1}{3}\right)y=\frac{4}{5}\times 27,6\times \frac{4}{5}x+6\times \frac{1}{4}y=6\times \frac{25}{4}
6x بىلەن \frac{4x}{5} نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى \frac{4}{5} گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى 6 گە كۆپەيتىڭ.
\frac{24}{5}x-\frac{4}{15}y=\frac{108}{5},\frac{24}{5}x+\frac{3}{2}y=\frac{75}{2}
ئاددىيلاشتۇرۇڭ.
\frac{24}{5}x-\frac{24}{5}x-\frac{4}{15}y-\frac{3}{2}y=\frac{108}{5}-\frac{75}{2}
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق \frac{24}{5}x-\frac{4}{15}y=\frac{108}{5} دىن \frac{24}{5}x+\frac{3}{2}y=\frac{75}{2} نى ئېلىڭ.
-\frac{4}{15}y-\frac{3}{2}y=\frac{108}{5}-\frac{75}{2}
\frac{24x}{5} نى -\frac{24x}{5} گە قوشۇڭ. \frac{24x}{5} بىلەن -\frac{24x}{5} يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
-\frac{53}{30}y=\frac{108}{5}-\frac{75}{2}
-\frac{4y}{15} نى -\frac{3y}{2} گە قوشۇڭ.
-\frac{53}{30}y=-\frac{159}{10}
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق \frac{108}{5} نى -\frac{75}{2} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
y=9
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى -\frac{53}{30} گە، يەنى كەسىرنىڭ ئەكس سانى ئارقىلىق ھەر ئىككى تەرەپنى كۆپەيتىدىغان سانغا بۆلۈڭ.
\frac{4}{5}x+\frac{1}{4}\times 9=\frac{25}{4}
\frac{4}{5}x+\frac{1}{4}y=\frac{25}{4} دە 9 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
\frac{4}{5}x+\frac{9}{4}=\frac{25}{4}
\frac{1}{4} نى 9 كە كۆپەيتىڭ.
\frac{4}{5}x=4
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{9}{4} نى ئېلىڭ.
x=5
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى \frac{4}{5} گە، يەنى كەسىرنىڭ ئەكس سانى ئارقىلىق ھەر ئىككى تەرەپنى كۆپەيتىدىغان سانغا بۆلۈڭ.
x=5,y=9
سىستېما ھەل قىلىندى.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}