m، n نى يېشىش
m = \frac{149}{19} = 7\frac{16}{19} \approx 7.842105263
n = \frac{213}{19} = 11\frac{4}{19} \approx 11.210526316
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
6m-5n=-9,4m+3n=65
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
6m-5n=-9
تەڭلىمىدىن بىرنى تالاپ، m نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق m نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
6m=5n-9
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 5n نى قوشۇڭ.
m=\frac{1}{6}\left(5n-9\right)
ھەر ئىككى تەرەپنى 6 گە بۆلۈڭ.
m=\frac{5}{6}n-\frac{3}{2}
\frac{1}{6} نى 5n-9 كە كۆپەيتىڭ.
4\left(\frac{5}{6}n-\frac{3}{2}\right)+3n=65
يەنە بىر تەڭلىمە 4m+3n=65 دىكى m نىڭ ئورنىغا \frac{5n}{6}-\frac{3}{2} نى ئالماشتۇرۇڭ.
\frac{10}{3}n-6+3n=65
4 نى \frac{5n}{6}-\frac{3}{2} كە كۆپەيتىڭ.
\frac{19}{3}n-6=65
\frac{10n}{3} نى 3n گە قوشۇڭ.
\frac{19}{3}n=71
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 6 نى قوشۇڭ.
n=\frac{213}{19}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى \frac{19}{3} گە، يەنى كەسىرنىڭ ئەكس سانى ئارقىلىق ھەر ئىككى تەرەپنى كۆپەيتىدىغان سانغا بۆلۈڭ.
m=\frac{5}{6}\times \frac{213}{19}-\frac{3}{2}
m=\frac{5}{6}n-\frac{3}{2} دە \frac{213}{19} نى n گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، m نى بىۋاسىتە يېشەلەيسىز.
m=\frac{355}{38}-\frac{3}{2}
سۈرەتنى سۈرەتكە، مەخرەجنى مەخرەجگە كۆپەيتىش ئارقىلىق \frac{5}{6} نى \frac{213}{19} گە كۆپەيتىڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە ئاددىيلاشتۇرۇڭ.
m=\frac{149}{19}
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق -\frac{3}{2} نى \frac{355}{38} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
m=\frac{149}{19},n=\frac{213}{19}
سىستېما ھەل قىلىندى.
6m-5n=-9,4m+3n=65
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}6&-5\\4&3\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}-9\\65\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}6&-5\\4&3\end{matrix}\right))\left(\begin{matrix}6&-5\\4&3\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}6&-5\\4&3\end{matrix}\right))\left(\begin{matrix}-9\\65\end{matrix}\right)
\left(\begin{matrix}6&-5\\4&3\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}6&-5\\4&3\end{matrix}\right))\left(\begin{matrix}-9\\65\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}6&-5\\4&3\end{matrix}\right))\left(\begin{matrix}-9\\65\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{3}{6\times 3-\left(-5\times 4\right)}&-\frac{-5}{6\times 3-\left(-5\times 4\right)}\\-\frac{4}{6\times 3-\left(-5\times 4\right)}&\frac{6}{6\times 3-\left(-5\times 4\right)}\end{matrix}\right)\left(\begin{matrix}-9\\65\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{3}{38}&\frac{5}{38}\\-\frac{2}{19}&\frac{3}{19}\end{matrix}\right)\left(\begin{matrix}-9\\65\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{3}{38}\left(-9\right)+\frac{5}{38}\times 65\\-\frac{2}{19}\left(-9\right)+\frac{3}{19}\times 65\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{149}{19}\\\frac{213}{19}\end{matrix}\right)
ھېسابلاڭ.
m=\frac{149}{19},n=\frac{213}{19}
ماترىتسا ئېلېمېنتلىرى m ۋە n نى يېيىڭ.
6m-5n=-9,4m+3n=65
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
4\times 6m+4\left(-5\right)n=4\left(-9\right),6\times 4m+6\times 3n=6\times 65
6m بىلەن 4m نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى 4 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى 6 گە كۆپەيتىڭ.
24m-20n=-36,24m+18n=390
ئاددىيلاشتۇرۇڭ.
24m-24m-20n-18n=-36-390
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق 24m-20n=-36 دىن 24m+18n=390 نى ئېلىڭ.
-20n-18n=-36-390
24m نى -24m گە قوشۇڭ. 24m بىلەن -24m يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
-38n=-36-390
-20n نى -18n گە قوشۇڭ.
-38n=-426
-36 نى -390 گە قوشۇڭ.
n=\frac{213}{19}
ھەر ئىككى تەرەپنى -38 گە بۆلۈڭ.
4m+3\times \frac{213}{19}=65
4m+3n=65 دە \frac{213}{19} نى n گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، m نى بىۋاسىتە يېشەلەيسىز.
4m+\frac{639}{19}=65
3 نى \frac{213}{19} كە كۆپەيتىڭ.
4m=\frac{596}{19}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{639}{19} نى ئېلىڭ.
m=\frac{149}{19}
ھەر ئىككى تەرەپنى 4 گە بۆلۈڭ.
m=\frac{149}{19},n=\frac{213}{19}
سىستېما ھەل قىلىندى.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}