y، x نى يېشىش
x = -\frac{38}{3} = -12\frac{2}{3} \approx -12.666666667
y = \frac{50}{3} = 16\frac{2}{3} \approx 16.666666667
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
5y+8x=-18,5y+2x=58
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
5y+8x=-18
تەڭلىمىدىن بىرنى تالاپ، y نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق y نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
5y=-8x-18
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 8x نى ئېلىڭ.
y=\frac{1}{5}\left(-8x-18\right)
ھەر ئىككى تەرەپنى 5 گە بۆلۈڭ.
y=-\frac{8}{5}x-\frac{18}{5}
\frac{1}{5} نى -8x-18 كە كۆپەيتىڭ.
5\left(-\frac{8}{5}x-\frac{18}{5}\right)+2x=58
يەنە بىر تەڭلىمە 5y+2x=58 دىكى y نىڭ ئورنىغا \frac{-8x-18}{5} نى ئالماشتۇرۇڭ.
-8x-18+2x=58
5 نى \frac{-8x-18}{5} كە كۆپەيتىڭ.
-6x-18=58
-8x نى 2x گە قوشۇڭ.
-6x=76
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 18 نى قوشۇڭ.
x=-\frac{38}{3}
ھەر ئىككى تەرەپنى -6 گە بۆلۈڭ.
y=-\frac{8}{5}\left(-\frac{38}{3}\right)-\frac{18}{5}
y=-\frac{8}{5}x-\frac{18}{5} دە -\frac{38}{3} نى x گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، y نى بىۋاسىتە يېشەلەيسىز.
y=\frac{304}{15}-\frac{18}{5}
سۈرەتنى سۈرەتكە، مەخرەجنى مەخرەجگە كۆپەيتىش ئارقىلىق -\frac{8}{5} نى -\frac{38}{3} گە كۆپەيتىڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە ئاددىيلاشتۇرۇڭ.
y=\frac{50}{3}
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق -\frac{18}{5} نى \frac{304}{15} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
y=\frac{50}{3},x=-\frac{38}{3}
سىستېما ھەل قىلىندى.
5y+8x=-18,5y+2x=58
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}5&8\\5&2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-18\\58\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}5&8\\5&2\end{matrix}\right))\left(\begin{matrix}5&8\\5&2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}5&8\\5&2\end{matrix}\right))\left(\begin{matrix}-18\\58\end{matrix}\right)
\left(\begin{matrix}5&8\\5&2\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}5&8\\5&2\end{matrix}\right))\left(\begin{matrix}-18\\58\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}5&8\\5&2\end{matrix}\right))\left(\begin{matrix}-18\\58\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5\times 2-8\times 5}&-\frac{8}{5\times 2-8\times 5}\\-\frac{5}{5\times 2-8\times 5}&\frac{5}{5\times 2-8\times 5}\end{matrix}\right)\left(\begin{matrix}-18\\58\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{15}&\frac{4}{15}\\\frac{1}{6}&-\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}-18\\58\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{15}\left(-18\right)+\frac{4}{15}\times 58\\\frac{1}{6}\left(-18\right)-\frac{1}{6}\times 58\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{50}{3}\\-\frac{38}{3}\end{matrix}\right)
ھېسابلاڭ.
y=\frac{50}{3},x=-\frac{38}{3}
ماترىتسا ئېلېمېنتلىرى y ۋە x نى يېيىڭ.
5y+8x=-18,5y+2x=58
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
5y-5y+8x-2x=-18-58
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق 5y+8x=-18 دىن 5y+2x=58 نى ئېلىڭ.
8x-2x=-18-58
5y نى -5y گە قوشۇڭ. 5y بىلەن -5y يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
6x=-18-58
8x نى -2x گە قوشۇڭ.
6x=-76
-18 نى -58 گە قوشۇڭ.
x=-\frac{38}{3}
ھەر ئىككى تەرەپنى 6 گە بۆلۈڭ.
5y+2\left(-\frac{38}{3}\right)=58
5y+2x=58 دە -\frac{38}{3} نى x گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، y نى بىۋاسىتە يېشەلەيسىز.
5y-\frac{76}{3}=58
2 نى -\frac{38}{3} كە كۆپەيتىڭ.
5y=\frac{250}{3}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{76}{3} نى قوشۇڭ.
y=\frac{50}{3}
ھەر ئىككى تەرەپنى 5 گە بۆلۈڭ.
y=\frac{50}{3},x=-\frac{38}{3}
سىستېما ھەل قىلىندى.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}