ئاساسىي مەزمۇنغا ئاتلاش
x، y نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

5x-y=6,3x-4y=-10
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
5x-y=6
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
5x=y+6
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە y نى قوشۇڭ.
x=\frac{1}{5}\left(y+6\right)
ھەر ئىككى تەرەپنى 5 گە بۆلۈڭ.
x=\frac{1}{5}y+\frac{6}{5}
\frac{1}{5} نى y+6 كە كۆپەيتىڭ.
3\left(\frac{1}{5}y+\frac{6}{5}\right)-4y=-10
يەنە بىر تەڭلىمە 3x-4y=-10 دىكى x نىڭ ئورنىغا \frac{6+y}{5} نى ئالماشتۇرۇڭ.
\frac{3}{5}y+\frac{18}{5}-4y=-10
3 نى \frac{6+y}{5} كە كۆپەيتىڭ.
-\frac{17}{5}y+\frac{18}{5}=-10
\frac{3y}{5} نى -4y گە قوشۇڭ.
-\frac{17}{5}y=-\frac{68}{5}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{18}{5} نى ئېلىڭ.
y=4
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى -\frac{17}{5} گە، يەنى كەسىرنىڭ ئەكس سانى ئارقىلىق ھەر ئىككى تەرەپنى كۆپەيتىدىغان سانغا بۆلۈڭ.
x=\frac{1}{5}\times 4+\frac{6}{5}
x=\frac{1}{5}y+\frac{6}{5} دە 4 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=\frac{4+6}{5}
\frac{1}{5} نى 4 كە كۆپەيتىڭ.
x=2
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق \frac{6}{5} نى \frac{4}{5} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
x=2,y=4
سىستېما ھەل قىلىندى.
5x-y=6,3x-4y=-10
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}5&-1\\3&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\-10\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}5&-1\\3&-4\end{matrix}\right))\left(\begin{matrix}5&-1\\3&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\3&-4\end{matrix}\right))\left(\begin{matrix}6\\-10\end{matrix}\right)
\left(\begin{matrix}5&-1\\3&-4\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\3&-4\end{matrix}\right))\left(\begin{matrix}6\\-10\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\3&-4\end{matrix}\right))\left(\begin{matrix}6\\-10\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{5\left(-4\right)-\left(-3\right)}&-\frac{-1}{5\left(-4\right)-\left(-3\right)}\\-\frac{3}{5\left(-4\right)-\left(-3\right)}&\frac{5}{5\left(-4\right)-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}6\\-10\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{17}&-\frac{1}{17}\\\frac{3}{17}&-\frac{5}{17}\end{matrix}\right)\left(\begin{matrix}6\\-10\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{17}\times 6-\frac{1}{17}\left(-10\right)\\\frac{3}{17}\times 6-\frac{5}{17}\left(-10\right)\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\4\end{matrix}\right)
ھېسابلاڭ.
x=2,y=4
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
5x-y=6,3x-4y=-10
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
3\times 5x+3\left(-1\right)y=3\times 6,5\times 3x+5\left(-4\right)y=5\left(-10\right)
5x بىلەن 3x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى 3 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى 5 گە كۆپەيتىڭ.
15x-3y=18,15x-20y=-50
ئاددىيلاشتۇرۇڭ.
15x-15x-3y+20y=18+50
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق 15x-3y=18 دىن 15x-20y=-50 نى ئېلىڭ.
-3y+20y=18+50
15x نى -15x گە قوشۇڭ. 15x بىلەن -15x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
17y=18+50
-3y نى 20y گە قوشۇڭ.
17y=68
18 نى 50 گە قوشۇڭ.
y=4
ھەر ئىككى تەرەپنى 17 گە بۆلۈڭ.
3x-4\times 4=-10
3x-4y=-10 دە 4 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
3x-16=-10
-4 نى 4 كە كۆپەيتىڭ.
3x=6
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 16 نى قوشۇڭ.
x=2
ھەر ئىككى تەرەپنى 3 گە بۆلۈڭ.
x=2,y=4
سىستېما ھەل قىلىندى.