x، y نى يېشىش
x=3
y=6
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
5x-7y=-27,2x+3y=24
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
5x-7y=-27
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
5x=7y-27
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 7y نى قوشۇڭ.
x=\frac{1}{5}\left(7y-27\right)
ھەر ئىككى تەرەپنى 5 گە بۆلۈڭ.
x=\frac{7}{5}y-\frac{27}{5}
\frac{1}{5} نى 7y-27 كە كۆپەيتىڭ.
2\left(\frac{7}{5}y-\frac{27}{5}\right)+3y=24
يەنە بىر تەڭلىمە 2x+3y=24 دىكى x نىڭ ئورنىغا \frac{7y-27}{5} نى ئالماشتۇرۇڭ.
\frac{14}{5}y-\frac{54}{5}+3y=24
2 نى \frac{7y-27}{5} كە كۆپەيتىڭ.
\frac{29}{5}y-\frac{54}{5}=24
\frac{14y}{5} نى 3y گە قوشۇڭ.
\frac{29}{5}y=\frac{174}{5}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{54}{5} نى قوشۇڭ.
y=6
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى \frac{29}{5} گە، يەنى كەسىرنىڭ ئەكس سانى ئارقىلىق ھەر ئىككى تەرەپنى كۆپەيتىدىغان سانغا بۆلۈڭ.
x=\frac{7}{5}\times 6-\frac{27}{5}
x=\frac{7}{5}y-\frac{27}{5} دە 6 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=\frac{42-27}{5}
\frac{7}{5} نى 6 كە كۆپەيتىڭ.
x=3
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق -\frac{27}{5} نى \frac{42}{5} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
x=3,y=6
سىستېما ھەل قىلىندى.
5x-7y=-27,2x+3y=24
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}5&-7\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-27\\24\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}5&-7\\2&3\end{matrix}\right))\left(\begin{matrix}5&-7\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-7\\2&3\end{matrix}\right))\left(\begin{matrix}-27\\24\end{matrix}\right)
\left(\begin{matrix}5&-7\\2&3\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-7\\2&3\end{matrix}\right))\left(\begin{matrix}-27\\24\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-7\\2&3\end{matrix}\right))\left(\begin{matrix}-27\\24\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5\times 3-\left(-7\times 2\right)}&-\frac{-7}{5\times 3-\left(-7\times 2\right)}\\-\frac{2}{5\times 3-\left(-7\times 2\right)}&\frac{5}{5\times 3-\left(-7\times 2\right)}\end{matrix}\right)\left(\begin{matrix}-27\\24\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{29}&\frac{7}{29}\\-\frac{2}{29}&\frac{5}{29}\end{matrix}\right)\left(\begin{matrix}-27\\24\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{29}\left(-27\right)+\frac{7}{29}\times 24\\-\frac{2}{29}\left(-27\right)+\frac{5}{29}\times 24\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\6\end{matrix}\right)
ھېسابلاڭ.
x=3,y=6
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
5x-7y=-27,2x+3y=24
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
2\times 5x+2\left(-7\right)y=2\left(-27\right),5\times 2x+5\times 3y=5\times 24
5x بىلەن 2x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى 2 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى 5 گە كۆپەيتىڭ.
10x-14y=-54,10x+15y=120
ئاددىيلاشتۇرۇڭ.
10x-10x-14y-15y=-54-120
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق 10x-14y=-54 دىن 10x+15y=120 نى ئېلىڭ.
-14y-15y=-54-120
10x نى -10x گە قوشۇڭ. 10x بىلەن -10x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
-29y=-54-120
-14y نى -15y گە قوشۇڭ.
-29y=-174
-54 نى -120 گە قوشۇڭ.
y=6
ھەر ئىككى تەرەپنى -29 گە بۆلۈڭ.
2x+3\times 6=24
2x+3y=24 دە 6 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
2x+18=24
3 نى 6 كە كۆپەيتىڭ.
2x=6
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 18 نى ئېلىڭ.
x=3
ھەر ئىككى تەرەپنى 2 گە بۆلۈڭ.
x=3,y=6
سىستېما ھەل قىلىندى.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}