x، y نى يېشىش
x=-5
y=0
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
5x-6y=-25,4x-3y+20=0
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
5x-6y=-25
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
5x=6y-25
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 6y نى قوشۇڭ.
x=\frac{1}{5}\left(6y-25\right)
ھەر ئىككى تەرەپنى 5 گە بۆلۈڭ.
x=\frac{6}{5}y-5
\frac{1}{5} نى 6y-25 كە كۆپەيتىڭ.
4\left(\frac{6}{5}y-5\right)-3y+20=0
يەنە بىر تەڭلىمە 4x-3y+20=0 دىكى x نىڭ ئورنىغا \frac{6y}{5}-5 نى ئالماشتۇرۇڭ.
\frac{24}{5}y-20-3y+20=0
4 نى \frac{6y}{5}-5 كە كۆپەيتىڭ.
\frac{9}{5}y-20+20=0
\frac{24y}{5} نى -3y گە قوشۇڭ.
\frac{9}{5}y=0
-20 نى 20 گە قوشۇڭ.
y=0
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى \frac{9}{5} گە، يەنى كەسىرنىڭ ئەكس سانى ئارقىلىق ھەر ئىككى تەرەپنى كۆپەيتىدىغان سانغا بۆلۈڭ.
x=-5
x=\frac{6}{5}y-5 دە 0 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=-5,y=0
سىستېما ھەل قىلىندى.
5x-6y=-25,4x-3y+20=0
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}5&-6\\4&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-25\\-20\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}5&-6\\4&-3\end{matrix}\right))\left(\begin{matrix}5&-6\\4&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-6\\4&-3\end{matrix}\right))\left(\begin{matrix}-25\\-20\end{matrix}\right)
\left(\begin{matrix}5&-6\\4&-3\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-6\\4&-3\end{matrix}\right))\left(\begin{matrix}-25\\-20\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-6\\4&-3\end{matrix}\right))\left(\begin{matrix}-25\\-20\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{5\left(-3\right)-\left(-6\times 4\right)}&-\frac{-6}{5\left(-3\right)-\left(-6\times 4\right)}\\-\frac{4}{5\left(-3\right)-\left(-6\times 4\right)}&\frac{5}{5\left(-3\right)-\left(-6\times 4\right)}\end{matrix}\right)\left(\begin{matrix}-25\\-20\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}&\frac{2}{3}\\-\frac{4}{9}&\frac{5}{9}\end{matrix}\right)\left(\begin{matrix}-25\\-20\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}\left(-25\right)+\frac{2}{3}\left(-20\right)\\-\frac{4}{9}\left(-25\right)+\frac{5}{9}\left(-20\right)\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5\\0\end{matrix}\right)
ھېسابلاڭ.
x=-5,y=0
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
5x-6y=-25,4x-3y+20=0
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
4\times 5x+4\left(-6\right)y=4\left(-25\right),5\times 4x+5\left(-3\right)y+5\times 20=0
5x بىلەن 4x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى 4 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى 5 گە كۆپەيتىڭ.
20x-24y=-100,20x-15y+100=0
ئاددىيلاشتۇرۇڭ.
20x-20x-24y+15y-100=-100
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق 20x-24y=-100 دىن 20x-15y+100=0 نى ئېلىڭ.
-24y+15y-100=-100
20x نى -20x گە قوشۇڭ. 20x بىلەن -20x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
-9y-100=-100
-24y نى 15y گە قوشۇڭ.
-9y=0
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 100 نى قوشۇڭ.
y=0
ھەر ئىككى تەرەپنى -9 گە بۆلۈڭ.
4x+20=0
4x-3y+20=0 دە 0 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
4x=-20
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 20 نى ئېلىڭ.
x=-5
ھەر ئىككى تەرەپنى 4 گە بۆلۈڭ.
x=-5,y=0
سىستېما ھەل قىلىندى.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}