x، y نى يېشىش
x = \frac{33}{7} = 4\frac{5}{7} \approx 4.714285714
y = \frac{8}{7} = 1\frac{1}{7} \approx 1.142857143
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
5x-4y=19,x+2y=7
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
5x-4y=19
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
5x=4y+19
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 4y نى قوشۇڭ.
x=\frac{1}{5}\left(4y+19\right)
ھەر ئىككى تەرەپنى 5 گە بۆلۈڭ.
x=\frac{4}{5}y+\frac{19}{5}
\frac{1}{5} نى 4y+19 كە كۆپەيتىڭ.
\frac{4}{5}y+\frac{19}{5}+2y=7
يەنە بىر تەڭلىمە x+2y=7 دىكى x نىڭ ئورنىغا \frac{4y+19}{5} نى ئالماشتۇرۇڭ.
\frac{14}{5}y+\frac{19}{5}=7
\frac{4y}{5} نى 2y گە قوشۇڭ.
\frac{14}{5}y=\frac{16}{5}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{19}{5} نى ئېلىڭ.
y=\frac{8}{7}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى \frac{14}{5} گە، يەنى كەسىرنىڭ ئەكس سانى ئارقىلىق ھەر ئىككى تەرەپنى كۆپەيتىدىغان سانغا بۆلۈڭ.
x=\frac{4}{5}\times \frac{8}{7}+\frac{19}{5}
x=\frac{4}{5}y+\frac{19}{5} دە \frac{8}{7} نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=\frac{32}{35}+\frac{19}{5}
سۈرەتنى سۈرەتكە، مەخرەجنى مەخرەجگە كۆپەيتىش ئارقىلىق \frac{4}{5} نى \frac{8}{7} گە كۆپەيتىڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە ئاددىيلاشتۇرۇڭ.
x=\frac{33}{7}
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق \frac{19}{5} نى \frac{32}{35} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
x=\frac{33}{7},y=\frac{8}{7}
سىستېما ھەل قىلىندى.
5x-4y=19,x+2y=7
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}5&-4\\1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}19\\7\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}5&-4\\1&2\end{matrix}\right))\left(\begin{matrix}5&-4\\1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-4\\1&2\end{matrix}\right))\left(\begin{matrix}19\\7\end{matrix}\right)
\left(\begin{matrix}5&-4\\1&2\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-4\\1&2\end{matrix}\right))\left(\begin{matrix}19\\7\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-4\\1&2\end{matrix}\right))\left(\begin{matrix}19\\7\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5\times 2-\left(-4\right)}&-\frac{-4}{5\times 2-\left(-4\right)}\\-\frac{1}{5\times 2-\left(-4\right)}&\frac{5}{5\times 2-\left(-4\right)}\end{matrix}\right)\left(\begin{matrix}19\\7\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}&\frac{2}{7}\\-\frac{1}{14}&\frac{5}{14}\end{matrix}\right)\left(\begin{matrix}19\\7\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}\times 19+\frac{2}{7}\times 7\\-\frac{1}{14}\times 19+\frac{5}{14}\times 7\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{33}{7}\\\frac{8}{7}\end{matrix}\right)
ھېسابلاڭ.
x=\frac{33}{7},y=\frac{8}{7}
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
5x-4y=19,x+2y=7
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
5x-4y=19,5x+5\times 2y=5\times 7
5x بىلەن x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى 1 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى 5 گە كۆپەيتىڭ.
5x-4y=19,5x+10y=35
ئاددىيلاشتۇرۇڭ.
5x-5x-4y-10y=19-35
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق 5x-4y=19 دىن 5x+10y=35 نى ئېلىڭ.
-4y-10y=19-35
5x نى -5x گە قوشۇڭ. 5x بىلەن -5x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
-14y=19-35
-4y نى -10y گە قوشۇڭ.
-14y=-16
19 نى -35 گە قوشۇڭ.
y=\frac{8}{7}
ھەر ئىككى تەرەپنى -14 گە بۆلۈڭ.
x+2\times \frac{8}{7}=7
x+2y=7 دە \frac{8}{7} نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x+\frac{16}{7}=7
2 نى \frac{8}{7} كە كۆپەيتىڭ.
x=\frac{33}{7}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{16}{7} نى ئېلىڭ.
x=\frac{33}{7},y=\frac{8}{7}
سىستېما ھەل قىلىندى.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}