ئاساسىي مەزمۇنغا ئاتلاش
x، z نى يېشىش
Tick mark Image

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

5x-7z=0
بىرىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. ھەر ئىككى تەرەپتىن 7z نى ئېلىڭ.
8x-9z=0
ئىككىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. ھەر ئىككى تەرەپتىن 9z نى ئېلىڭ.
5x-7z=0,8x-9z=0
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
5x-7z=0
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
5x=7z
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 7z نى قوشۇڭ.
x=\frac{1}{5}\times 7z
ھەر ئىككى تەرەپنى 5 گە بۆلۈڭ.
x=\frac{7}{5}z
\frac{1}{5} نى 7z كە كۆپەيتىڭ.
8\times \frac{7}{5}z-9z=0
يەنە بىر تەڭلىمە 8x-9z=0 دىكى x نىڭ ئورنىغا \frac{7z}{5} نى ئالماشتۇرۇڭ.
\frac{56}{5}z-9z=0
8 نى \frac{7z}{5} كە كۆپەيتىڭ.
\frac{11}{5}z=0
\frac{56z}{5} نى -9z گە قوشۇڭ.
z=0
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى \frac{11}{5} گە، يەنى كەسىرنىڭ ئەكس سانى ئارقىلىق ھەر ئىككى تەرەپنى كۆپەيتىدىغان سانغا بۆلۈڭ.
x=0
x=\frac{7}{5}z دە 0 نى z گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=0,z=0
سىستېما ھەل قىلىندى.
5x-7z=0
بىرىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. ھەر ئىككى تەرەپتىن 7z نى ئېلىڭ.
8x-9z=0
ئىككىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. ھەر ئىككى تەرەپتىن 9z نى ئېلىڭ.
5x-7z=0,8x-9z=0
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}5&-7\\8&-9\end{matrix}\right)\left(\begin{matrix}x\\z\end{matrix}\right)=\left(\begin{matrix}0\\0\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}5&-7\\8&-9\end{matrix}\right))\left(\begin{matrix}5&-7\\8&-9\end{matrix}\right)\left(\begin{matrix}x\\z\end{matrix}\right)=inverse(\left(\begin{matrix}5&-7\\8&-9\end{matrix}\right))\left(\begin{matrix}0\\0\end{matrix}\right)
\left(\begin{matrix}5&-7\\8&-9\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\z\end{matrix}\right)=inverse(\left(\begin{matrix}5&-7\\8&-9\end{matrix}\right))\left(\begin{matrix}0\\0\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\z\end{matrix}\right)=inverse(\left(\begin{matrix}5&-7\\8&-9\end{matrix}\right))\left(\begin{matrix}0\\0\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\z\end{matrix}\right)=\left(\begin{matrix}-\frac{9}{5\left(-9\right)-\left(-7\times 8\right)}&-\frac{-7}{5\left(-9\right)-\left(-7\times 8\right)}\\-\frac{8}{5\left(-9\right)-\left(-7\times 8\right)}&\frac{5}{5\left(-9\right)-\left(-7\times 8\right)}\end{matrix}\right)\left(\begin{matrix}0\\0\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\z\end{matrix}\right)=\left(\begin{matrix}-\frac{9}{11}&\frac{7}{11}\\-\frac{8}{11}&\frac{5}{11}\end{matrix}\right)\left(\begin{matrix}0\\0\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\z\end{matrix}\right)=\left(\begin{matrix}0\\0\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
x=0,z=0
ماترىتسا ئېلېمېنتلىرى x ۋە z نى يېيىڭ.
5x-7z=0
بىرىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. ھەر ئىككى تەرەپتىن 7z نى ئېلىڭ.
8x-9z=0
ئىككىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. ھەر ئىككى تەرەپتىن 9z نى ئېلىڭ.
5x-7z=0,8x-9z=0
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
8\times 5x+8\left(-7\right)z=0,5\times 8x+5\left(-9\right)z=0
5x بىلەن 8x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى 8 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى 5 گە كۆپەيتىڭ.
40x-56z=0,40x-45z=0
ئاددىيلاشتۇرۇڭ.
40x-40x-56z+45z=0
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق 40x-56z=0 دىن 40x-45z=0 نى ئېلىڭ.
-56z+45z=0
40x نى -40x گە قوشۇڭ. 40x بىلەن -40x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
-11z=0
-56z نى 45z گە قوشۇڭ.
z=0
ھەر ئىككى تەرەپنى -11 گە بۆلۈڭ.
8x=0
8x-9z=0 دە 0 نى z گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=0
ھەر ئىككى تەرەپنى 8 گە بۆلۈڭ.
x=0,z=0
سىستېما ھەل قىلىندى.