ئاساسىي مەزمۇنغا ئاتلاش
x، y نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

5x+y=9.95,6x+6y=18.6
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
5x+y=9.95
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
5x=-y+9.95
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن y نى ئېلىڭ.
x=\frac{1}{5}\left(-y+9.95\right)
ھەر ئىككى تەرەپنى 5 گە بۆلۈڭ.
x=-\frac{1}{5}y+\frac{199}{100}
\frac{1}{5} نى -y+9.95 كە كۆپەيتىڭ.
6\left(-\frac{1}{5}y+\frac{199}{100}\right)+6y=18.6
يەنە بىر تەڭلىمە 6x+6y=18.6 دىكى x نىڭ ئورنىغا -\frac{y}{5}+\frac{199}{100} نى ئالماشتۇرۇڭ.
-\frac{6}{5}y+\frac{597}{50}+6y=18.6
6 نى -\frac{y}{5}+\frac{199}{100} كە كۆپەيتىڭ.
\frac{24}{5}y+\frac{597}{50}=18.6
-\frac{6y}{5} نى 6y گە قوشۇڭ.
\frac{24}{5}y=\frac{333}{50}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{597}{50} نى ئېلىڭ.
y=\frac{111}{80}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى \frac{24}{5} گە، يەنى كەسىرنىڭ ئەكس سانى ئارقىلىق ھەر ئىككى تەرەپنى كۆپەيتىدىغان سانغا بۆلۈڭ.
x=-\frac{1}{5}\times \frac{111}{80}+\frac{199}{100}
x=-\frac{1}{5}y+\frac{199}{100} دە \frac{111}{80} نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=-\frac{111}{400}+\frac{199}{100}
سۈرەتنى سۈرەتكە، مەخرەجنى مەخرەجگە كۆپەيتىش ئارقىلىق -\frac{1}{5} نى \frac{111}{80} گە كۆپەيتىڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە ئاددىيلاشتۇرۇڭ.
x=\frac{137}{80}
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق \frac{199}{100} نى -\frac{111}{400} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
x=\frac{137}{80},y=\frac{111}{80}
سىستېما ھەل قىلىندى.
5x+y=9.95,6x+6y=18.6
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}5&1\\6&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9.95\\18.6\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}5&1\\6&6\end{matrix}\right))\left(\begin{matrix}5&1\\6&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\6&6\end{matrix}\right))\left(\begin{matrix}9.95\\18.6\end{matrix}\right)
\left(\begin{matrix}5&1\\6&6\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\6&6\end{matrix}\right))\left(\begin{matrix}9.95\\18.6\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\6&6\end{matrix}\right))\left(\begin{matrix}9.95\\18.6\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{5\times 6-6}&-\frac{1}{5\times 6-6}\\-\frac{6}{5\times 6-6}&\frac{5}{5\times 6-6}\end{matrix}\right)\left(\begin{matrix}9.95\\18.6\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&-\frac{1}{24}\\-\frac{1}{4}&\frac{5}{24}\end{matrix}\right)\left(\begin{matrix}9.95\\18.6\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\times 9.95-\frac{1}{24}\times 18.6\\-\frac{1}{4}\times 9.95+\frac{5}{24}\times 18.6\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{137}{80}\\\frac{111}{80}\end{matrix}\right)
ھېسابلاڭ.
x=\frac{137}{80},y=\frac{111}{80}
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
5x+y=9.95,6x+6y=18.6
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
6\times 5x+6y=6\times 9.95,5\times 6x+5\times 6y=5\times 18.6
5x بىلەن 6x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى 6 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى 5 گە كۆپەيتىڭ.
30x+6y=59.7,30x+30y=93
ئاددىيلاشتۇرۇڭ.
30x-30x+6y-30y=59.7-93
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق 30x+6y=59.7 دىن 30x+30y=93 نى ئېلىڭ.
6y-30y=59.7-93
30x نى -30x گە قوشۇڭ. 30x بىلەن -30x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
-24y=59.7-93
6y نى -30y گە قوشۇڭ.
-24y=-33.3
59.7 نى -93 گە قوشۇڭ.
y=\frac{111}{80}
ھەر ئىككى تەرەپنى -24 گە بۆلۈڭ.
6x+6\times \frac{111}{80}=18.6
6x+6y=18.6 دە \frac{111}{80} نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
6x+\frac{333}{40}=18.6
6 نى \frac{111}{80} كە كۆپەيتىڭ.
6x=\frac{411}{40}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{333}{40} نى ئېلىڭ.
x=\frac{137}{80}
ھەر ئىككى تەرەپنى 6 گە بۆلۈڭ.
x=\frac{137}{80},y=\frac{111}{80}
سىستېما ھەل قىلىندى.