x، y نى يېشىش
x = \frac{50}{19} = 2\frac{12}{19} \approx 2.631578947
y=-\frac{11}{19}\approx -0.578947368
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
5x+2y=12,2x-3y=7
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
5x+2y=12
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
5x=-2y+12
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 2y نى ئېلىڭ.
x=\frac{1}{5}\left(-2y+12\right)
ھەر ئىككى تەرەپنى 5 گە بۆلۈڭ.
x=-\frac{2}{5}y+\frac{12}{5}
\frac{1}{5} نى -2y+12 كە كۆپەيتىڭ.
2\left(-\frac{2}{5}y+\frac{12}{5}\right)-3y=7
يەنە بىر تەڭلىمە 2x-3y=7 دىكى x نىڭ ئورنىغا \frac{-2y+12}{5} نى ئالماشتۇرۇڭ.
-\frac{4}{5}y+\frac{24}{5}-3y=7
2 نى \frac{-2y+12}{5} كە كۆپەيتىڭ.
-\frac{19}{5}y+\frac{24}{5}=7
-\frac{4y}{5} نى -3y گە قوشۇڭ.
-\frac{19}{5}y=\frac{11}{5}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{24}{5} نى ئېلىڭ.
y=-\frac{11}{19}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى -\frac{19}{5} گە، يەنى كەسىرنىڭ ئەكس سانى ئارقىلىق ھەر ئىككى تەرەپنى كۆپەيتىدىغان سانغا بۆلۈڭ.
x=-\frac{2}{5}\left(-\frac{11}{19}\right)+\frac{12}{5}
x=-\frac{2}{5}y+\frac{12}{5} دە -\frac{11}{19} نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=\frac{22}{95}+\frac{12}{5}
سۈرەتنى سۈرەتكە، مەخرەجنى مەخرەجگە كۆپەيتىش ئارقىلىق -\frac{2}{5} نى -\frac{11}{19} گە كۆپەيتىڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە ئاددىيلاشتۇرۇڭ.
x=\frac{50}{19}
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق \frac{12}{5} نى \frac{22}{95} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
x=\frac{50}{19},y=-\frac{11}{19}
سىستېما ھەل قىلىندى.
5x+2y=12,2x-3y=7
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}5&2\\2&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12\\7\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}5&2\\2&-3\end{matrix}\right))\left(\begin{matrix}5&2\\2&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&2\\2&-3\end{matrix}\right))\left(\begin{matrix}12\\7\end{matrix}\right)
\left(\begin{matrix}5&2\\2&-3\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&2\\2&-3\end{matrix}\right))\left(\begin{matrix}12\\7\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&2\\2&-3\end{matrix}\right))\left(\begin{matrix}12\\7\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{5\left(-3\right)-2\times 2}&-\frac{2}{5\left(-3\right)-2\times 2}\\-\frac{2}{5\left(-3\right)-2\times 2}&\frac{5}{5\left(-3\right)-2\times 2}\end{matrix}\right)\left(\begin{matrix}12\\7\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{19}&\frac{2}{19}\\\frac{2}{19}&-\frac{5}{19}\end{matrix}\right)\left(\begin{matrix}12\\7\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{19}\times 12+\frac{2}{19}\times 7\\\frac{2}{19}\times 12-\frac{5}{19}\times 7\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{50}{19}\\-\frac{11}{19}\end{matrix}\right)
ھېسابلاڭ.
x=\frac{50}{19},y=-\frac{11}{19}
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
5x+2y=12,2x-3y=7
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
2\times 5x+2\times 2y=2\times 12,5\times 2x+5\left(-3\right)y=5\times 7
5x بىلەن 2x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى 2 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى 5 گە كۆپەيتىڭ.
10x+4y=24,10x-15y=35
ئاددىيلاشتۇرۇڭ.
10x-10x+4y+15y=24-35
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق 10x+4y=24 دىن 10x-15y=35 نى ئېلىڭ.
4y+15y=24-35
10x نى -10x گە قوشۇڭ. 10x بىلەن -10x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
19y=24-35
4y نى 15y گە قوشۇڭ.
19y=-11
24 نى -35 گە قوشۇڭ.
y=-\frac{11}{19}
ھەر ئىككى تەرەپنى 19 گە بۆلۈڭ.
2x-3\left(-\frac{11}{19}\right)=7
2x-3y=7 دە -\frac{11}{19} نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
2x+\frac{33}{19}=7
-3 نى -\frac{11}{19} كە كۆپەيتىڭ.
2x=\frac{100}{19}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{33}{19} نى ئېلىڭ.
x=\frac{50}{19}
ھەر ئىككى تەرەپنى 2 گە بۆلۈڭ.
x=\frac{50}{19},y=-\frac{11}{19}
سىستېما ھەل قىلىندى.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}