ئاساسىي مەزمۇنغا ئاتلاش
x، y نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

4x-y=1,2x+y=4
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
4x-y=1
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
4x=y+1
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە y نى قوشۇڭ.
x=\frac{1}{4}\left(y+1\right)
ھەر ئىككى تەرەپنى 4 گە بۆلۈڭ.
x=\frac{1}{4}y+\frac{1}{4}
\frac{1}{4} نى y+1 كە كۆپەيتىڭ.
2\left(\frac{1}{4}y+\frac{1}{4}\right)+y=4
يەنە بىر تەڭلىمە 2x+y=4 دىكى x نىڭ ئورنىغا \frac{1+y}{4} نى ئالماشتۇرۇڭ.
\frac{1}{2}y+\frac{1}{2}+y=4
2 نى \frac{1+y}{4} كە كۆپەيتىڭ.
\frac{3}{2}y+\frac{1}{2}=4
\frac{y}{2} نى y گە قوشۇڭ.
\frac{3}{2}y=\frac{7}{2}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{1}{2} نى ئېلىڭ.
y=\frac{7}{3}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى \frac{3}{2} گە، يەنى كەسىرنىڭ ئەكس سانى ئارقىلىق ھەر ئىككى تەرەپنى كۆپەيتىدىغان سانغا بۆلۈڭ.
x=\frac{1}{4}\times \frac{7}{3}+\frac{1}{4}
x=\frac{1}{4}y+\frac{1}{4} دە \frac{7}{3} نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=\frac{7}{12}+\frac{1}{4}
سۈرەتنى سۈرەتكە، مەخرەجنى مەخرەجگە كۆپەيتىش ئارقىلىق \frac{1}{4} نى \frac{7}{3} گە كۆپەيتىڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە ئاددىيلاشتۇرۇڭ.
x=\frac{5}{6}
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق \frac{1}{4} نى \frac{7}{12} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
x=\frac{5}{6},y=\frac{7}{3}
سىستېما ھەل قىلىندى.
4x-y=1,2x+y=4
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}4&-1\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\4\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}4&-1\\2&1\end{matrix}\right))\left(\begin{matrix}4&-1\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-1\\2&1\end{matrix}\right))\left(\begin{matrix}1\\4\end{matrix}\right)
\left(\begin{matrix}4&-1\\2&1\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-1\\2&1\end{matrix}\right))\left(\begin{matrix}1\\4\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-1\\2&1\end{matrix}\right))\left(\begin{matrix}1\\4\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4-\left(-2\right)}&-\frac{-1}{4-\left(-2\right)}\\-\frac{2}{4-\left(-2\right)}&\frac{4}{4-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}1\\4\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}&\frac{1}{6}\\-\frac{1}{3}&\frac{2}{3}\end{matrix}\right)\left(\begin{matrix}1\\4\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}+\frac{1}{6}\times 4\\-\frac{1}{3}+\frac{2}{3}\times 4\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{6}\\\frac{7}{3}\end{matrix}\right)
ھېسابلاڭ.
x=\frac{5}{6},y=\frac{7}{3}
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
4x-y=1,2x+y=4
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
2\times 4x+2\left(-1\right)y=2,4\times 2x+4y=4\times 4
4x بىلەن 2x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى 2 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى 4 گە كۆپەيتىڭ.
8x-2y=2,8x+4y=16
ئاددىيلاشتۇرۇڭ.
8x-8x-2y-4y=2-16
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق 8x-2y=2 دىن 8x+4y=16 نى ئېلىڭ.
-2y-4y=2-16
8x نى -8x گە قوشۇڭ. 8x بىلەن -8x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
-6y=2-16
-2y نى -4y گە قوشۇڭ.
-6y=-14
2 نى -16 گە قوشۇڭ.
y=\frac{7}{3}
ھەر ئىككى تەرەپنى -6 گە بۆلۈڭ.
2x+\frac{7}{3}=4
2x+y=4 دە \frac{7}{3} نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
2x=\frac{5}{3}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{7}{3} نى ئېلىڭ.
x=\frac{5}{6}
ھەر ئىككى تەرەپنى 2 گە بۆلۈڭ.
x=\frac{5}{6},y=\frac{7}{3}
سىستېما ھەل قىلىندى.