ئاساسىي مەزمۇنغا ئاتلاش
x، y نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

4x-3y=1,5x+3y=-10
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
4x-3y=1
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
4x=3y+1
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 3y نى قوشۇڭ.
x=\frac{1}{4}\left(3y+1\right)
ھەر ئىككى تەرەپنى 4 گە بۆلۈڭ.
x=\frac{3}{4}y+\frac{1}{4}
\frac{1}{4} نى 3y+1 كە كۆپەيتىڭ.
5\left(\frac{3}{4}y+\frac{1}{4}\right)+3y=-10
يەنە بىر تەڭلىمە 5x+3y=-10 دىكى x نىڭ ئورنىغا \frac{3y+1}{4} نى ئالماشتۇرۇڭ.
\frac{15}{4}y+\frac{5}{4}+3y=-10
5 نى \frac{3y+1}{4} كە كۆپەيتىڭ.
\frac{27}{4}y+\frac{5}{4}=-10
\frac{15y}{4} نى 3y گە قوشۇڭ.
\frac{27}{4}y=-\frac{45}{4}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{5}{4} نى ئېلىڭ.
y=-\frac{5}{3}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى \frac{27}{4} گە، يەنى كەسىرنىڭ ئەكس سانى ئارقىلىق ھەر ئىككى تەرەپنى كۆپەيتىدىغان سانغا بۆلۈڭ.
x=\frac{3}{4}\left(-\frac{5}{3}\right)+\frac{1}{4}
x=\frac{3}{4}y+\frac{1}{4} دە -\frac{5}{3} نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=\frac{-5+1}{4}
سۈرەتنى سۈرەتكە، مەخرەجنى مەخرەجگە كۆپەيتىش ئارقىلىق \frac{3}{4} نى -\frac{5}{3} گە كۆپەيتىڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە ئاددىيلاشتۇرۇڭ.
x=-1
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق \frac{1}{4} نى -\frac{5}{4} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
x=-1,y=-\frac{5}{3}
سىستېما ھەل قىلىندى.
4x-3y=1,5x+3y=-10
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}4&-3\\5&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-10\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}4&-3\\5&3\end{matrix}\right))\left(\begin{matrix}4&-3\\5&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-3\\5&3\end{matrix}\right))\left(\begin{matrix}1\\-10\end{matrix}\right)
\left(\begin{matrix}4&-3\\5&3\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-3\\5&3\end{matrix}\right))\left(\begin{matrix}1\\-10\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-3\\5&3\end{matrix}\right))\left(\begin{matrix}1\\-10\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4\times 3-\left(-3\times 5\right)}&-\frac{-3}{4\times 3-\left(-3\times 5\right)}\\-\frac{5}{4\times 3-\left(-3\times 5\right)}&\frac{4}{4\times 3-\left(-3\times 5\right)}\end{matrix}\right)\left(\begin{matrix}1\\-10\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{9}&\frac{1}{9}\\-\frac{5}{27}&\frac{4}{27}\end{matrix}\right)\left(\begin{matrix}1\\-10\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{9}+\frac{1}{9}\left(-10\right)\\-\frac{5}{27}+\frac{4}{27}\left(-10\right)\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\-\frac{5}{3}\end{matrix}\right)
ھېسابلاڭ.
x=-1,y=-\frac{5}{3}
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
4x-3y=1,5x+3y=-10
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
5\times 4x+5\left(-3\right)y=5,4\times 5x+4\times 3y=4\left(-10\right)
4x بىلەن 5x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى 5 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى 4 گە كۆپەيتىڭ.
20x-15y=5,20x+12y=-40
ئاددىيلاشتۇرۇڭ.
20x-20x-15y-12y=5+40
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق 20x-15y=5 دىن 20x+12y=-40 نى ئېلىڭ.
-15y-12y=5+40
20x نى -20x گە قوشۇڭ. 20x بىلەن -20x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
-27y=5+40
-15y نى -12y گە قوشۇڭ.
-27y=45
5 نى 40 گە قوشۇڭ.
y=-\frac{5}{3}
ھەر ئىككى تەرەپنى -27 گە بۆلۈڭ.
5x+3\left(-\frac{5}{3}\right)=-10
5x+3y=-10 دە -\frac{5}{3} نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
5x-5=-10
3 نى -\frac{5}{3} كە كۆپەيتىڭ.
5x=-5
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 5 نى قوشۇڭ.
x=-1
ھەر ئىككى تەرەپنى 5 گە بۆلۈڭ.
x=-1,y=-\frac{5}{3}
سىستېما ھەل قىلىندى.