ئاساسىي مەزمۇنغا ئاتلاش
x، y نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

4x-2y+4=0,-4x+3y-3=0
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
4x-2y+4=0
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
4x-2y=-4
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 4 نى ئېلىڭ.
4x=2y-4
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 2y نى قوشۇڭ.
x=\frac{1}{4}\left(2y-4\right)
ھەر ئىككى تەرەپنى 4 گە بۆلۈڭ.
x=\frac{1}{2}y-1
\frac{1}{4} نى -4+2y كە كۆپەيتىڭ.
-4\left(\frac{1}{2}y-1\right)+3y-3=0
يەنە بىر تەڭلىمە -4x+3y-3=0 دىكى x نىڭ ئورنىغا \frac{y}{2}-1 نى ئالماشتۇرۇڭ.
-2y+4+3y-3=0
-4 نى \frac{y}{2}-1 كە كۆپەيتىڭ.
y+4-3=0
-2y نى 3y گە قوشۇڭ.
y+1=0
4 نى -3 گە قوشۇڭ.
y=-1
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 1 نى ئېلىڭ.
x=\frac{1}{2}\left(-1\right)-1
x=\frac{1}{2}y-1 دە -1 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=-\frac{1}{2}-1
\frac{1}{2} نى -1 كە كۆپەيتىڭ.
x=-\frac{3}{2}
-1 نى -\frac{1}{2} گە قوشۇڭ.
x=-\frac{3}{2},y=-1
سىستېما ھەل قىلىندى.
4x-2y+4=0,-4x+3y-3=0
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}4&-2\\-4&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\\3\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}4&-2\\-4&3\end{matrix}\right))\left(\begin{matrix}4&-2\\-4&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-2\\-4&3\end{matrix}\right))\left(\begin{matrix}-4\\3\end{matrix}\right)
\left(\begin{matrix}4&-2\\-4&3\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-2\\-4&3\end{matrix}\right))\left(\begin{matrix}-4\\3\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-2\\-4&3\end{matrix}\right))\left(\begin{matrix}-4\\3\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4\times 3-\left(-2\left(-4\right)\right)}&-\frac{-2}{4\times 3-\left(-2\left(-4\right)\right)}\\-\frac{-4}{4\times 3-\left(-2\left(-4\right)\right)}&\frac{4}{4\times 3-\left(-2\left(-4\right)\right)}\end{matrix}\right)\left(\begin{matrix}-4\\3\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4}&\frac{1}{2}\\1&1\end{matrix}\right)\left(\begin{matrix}-4\\3\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4}\left(-4\right)+\frac{1}{2}\times 3\\-4+3\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{2}\\-1\end{matrix}\right)
ھېسابلاڭ.
x=-\frac{3}{2},y=-1
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
4x-2y+4=0,-4x+3y-3=0
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
-4\times 4x-4\left(-2\right)y-4\times 4=0,4\left(-4\right)x+4\times 3y+4\left(-3\right)=0
4x بىلەن -4x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى -4 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى 4 گە كۆپەيتىڭ.
-16x+8y-16=0,-16x+12y-12=0
ئاددىيلاشتۇرۇڭ.
-16x+16x+8y-12y-16+12=0
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق -16x+8y-16=0 دىن -16x+12y-12=0 نى ئېلىڭ.
8y-12y-16+12=0
-16x نى 16x گە قوشۇڭ. -16x بىلەن 16x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
-4y-16+12=0
8y نى -12y گە قوشۇڭ.
-4y-4=0
-16 نى 12 گە قوشۇڭ.
-4y=4
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 4 نى قوشۇڭ.
y=-1
ھەر ئىككى تەرەپنى -4 گە بۆلۈڭ.
-4x+3\left(-1\right)-3=0
-4x+3y-3=0 دە -1 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
-4x-3-3=0
3 نى -1 كە كۆپەيتىڭ.
-4x-6=0
-3 نى -3 گە قوشۇڭ.
-4x=6
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 6 نى قوشۇڭ.
x=-\frac{3}{2}
ھەر ئىككى تەرەپنى -4 گە بۆلۈڭ.
x=-\frac{3}{2},y=-1
سىستېما ھەل قىلىندى.