x، y نى يېشىش
x=4
y=-1
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
4x+y=15,-x+3y=-7
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
4x+y=15
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
4x=-y+15
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن y نى ئېلىڭ.
x=\frac{1}{4}\left(-y+15\right)
ھەر ئىككى تەرەپنى 4 گە بۆلۈڭ.
x=-\frac{1}{4}y+\frac{15}{4}
\frac{1}{4} نى -y+15 كە كۆپەيتىڭ.
-\left(-\frac{1}{4}y+\frac{15}{4}\right)+3y=-7
يەنە بىر تەڭلىمە -x+3y=-7 دىكى x نىڭ ئورنىغا \frac{-y+15}{4} نى ئالماشتۇرۇڭ.
\frac{1}{4}y-\frac{15}{4}+3y=-7
-1 نى \frac{-y+15}{4} كە كۆپەيتىڭ.
\frac{13}{4}y-\frac{15}{4}=-7
\frac{y}{4} نى 3y گە قوشۇڭ.
\frac{13}{4}y=-\frac{13}{4}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{15}{4} نى قوشۇڭ.
y=-1
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى \frac{13}{4} گە، يەنى كەسىرنىڭ ئەكس سانى ئارقىلىق ھەر ئىككى تەرەپنى كۆپەيتىدىغان سانغا بۆلۈڭ.
x=-\frac{1}{4}\left(-1\right)+\frac{15}{4}
x=-\frac{1}{4}y+\frac{15}{4} دە -1 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=\frac{1+15}{4}
-\frac{1}{4} نى -1 كە كۆپەيتىڭ.
x=4
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق \frac{15}{4} نى \frac{1}{4} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
x=4,y=-1
سىستېما ھەل قىلىندى.
4x+y=15,-x+3y=-7
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}4&1\\-1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}15\\-7\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}4&1\\-1&3\end{matrix}\right))\left(\begin{matrix}4&1\\-1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&1\\-1&3\end{matrix}\right))\left(\begin{matrix}15\\-7\end{matrix}\right)
\left(\begin{matrix}4&1\\-1&3\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&1\\-1&3\end{matrix}\right))\left(\begin{matrix}15\\-7\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&1\\-1&3\end{matrix}\right))\left(\begin{matrix}15\\-7\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4\times 3-\left(-1\right)}&-\frac{1}{4\times 3-\left(-1\right)}\\-\frac{-1}{4\times 3-\left(-1\right)}&\frac{4}{4\times 3-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}15\\-7\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{13}&-\frac{1}{13}\\\frac{1}{13}&\frac{4}{13}\end{matrix}\right)\left(\begin{matrix}15\\-7\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{13}\times 15-\frac{1}{13}\left(-7\right)\\\frac{1}{13}\times 15+\frac{4}{13}\left(-7\right)\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\-1\end{matrix}\right)
ھېسابلاڭ.
x=4,y=-1
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
4x+y=15,-x+3y=-7
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
-4x-y=-15,4\left(-1\right)x+4\times 3y=4\left(-7\right)
4x بىلەن -x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى -1 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى 4 گە كۆپەيتىڭ.
-4x-y=-15,-4x+12y=-28
ئاددىيلاشتۇرۇڭ.
-4x+4x-y-12y=-15+28
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق -4x-y=-15 دىن -4x+12y=-28 نى ئېلىڭ.
-y-12y=-15+28
-4x نى 4x گە قوشۇڭ. -4x بىلەن 4x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
-13y=-15+28
-y نى -12y گە قوشۇڭ.
-13y=13
-15 نى 28 گە قوشۇڭ.
y=-1
ھەر ئىككى تەرەپنى -13 گە بۆلۈڭ.
-x+3\left(-1\right)=-7
-x+3y=-7 دە -1 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
-x-3=-7
3 نى -1 كە كۆپەيتىڭ.
-x=-4
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 3 نى قوشۇڭ.
x=4
ھەر ئىككى تەرەپنى -1 گە بۆلۈڭ.
x=4,y=-1
سىستېما ھەل قىلىندى.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}