ئاساسىي مەزمۇنغا ئاتلاش
x، y نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

4x+5y=2,3x+4y=1
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
4x+5y=2
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
4x=-5y+2
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 5y نى ئېلىڭ.
x=\frac{1}{4}\left(-5y+2\right)
ھەر ئىككى تەرەپنى 4 گە بۆلۈڭ.
x=-\frac{5}{4}y+\frac{1}{2}
\frac{1}{4} نى -5y+2 كە كۆپەيتىڭ.
3\left(-\frac{5}{4}y+\frac{1}{2}\right)+4y=1
يەنە بىر تەڭلىمە 3x+4y=1 دىكى x نىڭ ئورنىغا -\frac{5y}{4}+\frac{1}{2} نى ئالماشتۇرۇڭ.
-\frac{15}{4}y+\frac{3}{2}+4y=1
3 نى -\frac{5y}{4}+\frac{1}{2} كە كۆپەيتىڭ.
\frac{1}{4}y+\frac{3}{2}=1
-\frac{15y}{4} نى 4y گە قوشۇڭ.
\frac{1}{4}y=-\frac{1}{2}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{3}{2} نى ئېلىڭ.
y=-2
ھەر ئىككى تەرەپنى 4 گە كۆپەيتىڭ.
x=-\frac{5}{4}\left(-2\right)+\frac{1}{2}
x=-\frac{5}{4}y+\frac{1}{2} دە -2 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=\frac{5+1}{2}
-\frac{5}{4} نى -2 كە كۆپەيتىڭ.
x=3
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق \frac{1}{2} نى \frac{5}{2} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
x=3,y=-2
سىستېما ھەل قىلىندى.
4x+5y=2,3x+4y=1
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}4&5\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\1\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}4&5\\3&4\end{matrix}\right))\left(\begin{matrix}4&5\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&5\\3&4\end{matrix}\right))\left(\begin{matrix}2\\1\end{matrix}\right)
\left(\begin{matrix}4&5\\3&4\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&5\\3&4\end{matrix}\right))\left(\begin{matrix}2\\1\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&5\\3&4\end{matrix}\right))\left(\begin{matrix}2\\1\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{4\times 4-5\times 3}&-\frac{5}{4\times 4-5\times 3}\\-\frac{3}{4\times 4-5\times 3}&\frac{4}{4\times 4-5\times 3}\end{matrix}\right)\left(\begin{matrix}2\\1\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4&-5\\-3&4\end{matrix}\right)\left(\begin{matrix}2\\1\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\times 2-5\\-3\times 2+4\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-2\end{matrix}\right)
ھېسابلاڭ.
x=3,y=-2
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
4x+5y=2,3x+4y=1
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
3\times 4x+3\times 5y=3\times 2,4\times 3x+4\times 4y=4
4x بىلەن 3x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى 3 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى 4 گە كۆپەيتىڭ.
12x+15y=6,12x+16y=4
ئاددىيلاشتۇرۇڭ.
12x-12x+15y-16y=6-4
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق 12x+15y=6 دىن 12x+16y=4 نى ئېلىڭ.
15y-16y=6-4
12x نى -12x گە قوشۇڭ. 12x بىلەن -12x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
-y=6-4
15y نى -16y گە قوشۇڭ.
-y=2
6 نى -4 گە قوشۇڭ.
y=-2
ھەر ئىككى تەرەپنى -1 گە بۆلۈڭ.
3x+4\left(-2\right)=1
3x+4y=1 دە -2 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
3x-8=1
4 نى -2 كە كۆپەيتىڭ.
3x=9
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 8 نى قوشۇڭ.
x=3
ھەر ئىككى تەرەپنى 3 گە بۆلۈڭ.
x=3,y=-2
سىستېما ھەل قىلىندى.