x، y نى يېشىش
x=-\frac{1}{4}=-0.25
y=\frac{1}{5}=0.2
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
4x+5y=0,8x-15y=-5
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
4x+5y=0
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
4x=-5y
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 5y نى ئېلىڭ.
x=\frac{1}{4}\left(-5\right)y
ھەر ئىككى تەرەپنى 4 گە بۆلۈڭ.
x=-\frac{5}{4}y
\frac{1}{4} نى -5y كە كۆپەيتىڭ.
8\left(-\frac{5}{4}\right)y-15y=-5
يەنە بىر تەڭلىمە 8x-15y=-5 دىكى x نىڭ ئورنىغا -\frac{5y}{4} نى ئالماشتۇرۇڭ.
-10y-15y=-5
8 نى -\frac{5y}{4} كە كۆپەيتىڭ.
-25y=-5
-10y نى -15y گە قوشۇڭ.
y=\frac{1}{5}
ھەر ئىككى تەرەپنى -25 گە بۆلۈڭ.
x=-\frac{5}{4}\times \frac{1}{5}
x=-\frac{5}{4}y دە \frac{1}{5} نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=-\frac{1}{4}
سۈرەتنى سۈرەتكە، مەخرەجنى مەخرەجگە كۆپەيتىش ئارقىلىق -\frac{5}{4} نى \frac{1}{5} گە كۆپەيتىڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە ئاددىيلاشتۇرۇڭ.
x=-\frac{1}{4},y=\frac{1}{5}
سىستېما ھەل قىلىندى.
4x+5y=0,8x-15y=-5
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}4&5\\8&-15\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\-5\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}4&5\\8&-15\end{matrix}\right))\left(\begin{matrix}4&5\\8&-15\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&5\\8&-15\end{matrix}\right))\left(\begin{matrix}0\\-5\end{matrix}\right)
\left(\begin{matrix}4&5\\8&-15\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&5\\8&-15\end{matrix}\right))\left(\begin{matrix}0\\-5\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&5\\8&-15\end{matrix}\right))\left(\begin{matrix}0\\-5\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{15}{4\left(-15\right)-5\times 8}&-\frac{5}{4\left(-15\right)-5\times 8}\\-\frac{8}{4\left(-15\right)-5\times 8}&\frac{4}{4\left(-15\right)-5\times 8}\end{matrix}\right)\left(\begin{matrix}0\\-5\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{20}&\frac{1}{20}\\\frac{2}{25}&-\frac{1}{25}\end{matrix}\right)\left(\begin{matrix}0\\-5\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{20}\left(-5\right)\\-\frac{1}{25}\left(-5\right)\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}\\\frac{1}{5}\end{matrix}\right)
ھېسابلاڭ.
x=-\frac{1}{4},y=\frac{1}{5}
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
4x+5y=0,8x-15y=-5
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
8\times 4x+8\times 5y=0,4\times 8x+4\left(-15\right)y=4\left(-5\right)
4x بىلەن 8x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى 8 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى 4 گە كۆپەيتىڭ.
32x+40y=0,32x-60y=-20
ئاددىيلاشتۇرۇڭ.
32x-32x+40y+60y=20
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق 32x+40y=0 دىن 32x-60y=-20 نى ئېلىڭ.
40y+60y=20
32x نى -32x گە قوشۇڭ. 32x بىلەن -32x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
100y=20
40y نى 60y گە قوشۇڭ.
y=\frac{1}{5}
ھەر ئىككى تەرەپنى 100 گە بۆلۈڭ.
8x-15\times \frac{1}{5}=-5
8x-15y=-5 دە \frac{1}{5} نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
8x-3=-5
-15 نى \frac{1}{5} كە كۆپەيتىڭ.
8x=-2
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 3 نى قوشۇڭ.
x=-\frac{1}{4}
ھەر ئىككى تەرەپنى 8 گە بۆلۈڭ.
x=-\frac{1}{4},y=\frac{1}{5}
سىستېما ھەل قىلىندى.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}